Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\frac{2n+9}{n+2}\)+ \(\frac{5n+17}{n+2}\)-\(\frac{3n}{n+2}\)
B= \(\frac{2n+9+5n+17-3n}{n+2}\)
B= \(\frac{\left(2n+5n-3n\right)+9+17}{n+2}\)
B= \(\frac{4n+9+17}{n+2}\)= \(\frac{4n+26}{n+2}\)
Để biểu thức B là số tự nhiên thì ( 4n+26) \(⋮\)n+2
=> n+2 \(⋮\)n+2
=> (4n+26) - 4(n+2)\(⋮\)n+2
=> 4n+26 - 4n - 8 \(⋮\)n+2
=> 18 \(⋮\)n+2
=> n+2 \(\in\)Ư(18)={1; 2; 9; 3; 6; 18; -1; -2; -9; -3; -6; -18}
=> N\(\in\){ -1; 0; 7; 1; 4; 16; -3; -4; -5; -11; -20; -8}
Vậy...
\(A=\frac{n+10}{2n-8}=\frac{n-4+14}{2\left(n-4\right)}=\frac{\left(n-4\right)}{2\left(n-4\right)}+\frac{14}{2\left(n-4\right)}\)
\(=\frac{1}{2}+\frac{14}{2n-8}\)
\(\Rightarrow2n-8\in U\left(14\right)=\left\{1;2;7;14;-1;-2;-7;-14\right\}\)
\(\Rightarrow2n\in\left\{9;10;15;22;7;6;1;-6\right\}\)
\(\Rightarrow n\in\left\{5;11;3\right\}\)( VÌ số tự nhiên n có giá trị là 1 số nguyên)
đẻ A là số nguyên
=> (n+10) chia hết cho (2n-8)
vì (n+10) chia hết cho 2n+8
=> 2(n+10) chia hết cho 2n+8 hay 2n+20 chia hết cho 2n+8
vì 2n+20 chia hết cho 2n+8
và 2n+8 chia hết cho 2n+8
=> (2n+20) - (2n+8) chia hết cho 2n+8
hay 12 chia hết cho 2n+8
=> 2N+8 THUỘC ( 1,2,3,4,6,12)
=> 2N THUỘC (-7,-6,-5,-4,-2,4) VÌ 2N LÀ SỐ CHẴN
=>2N THUỘC (-6,-4,-2,4)
=> N THUỘC (-3,-2,-1,2)
VẬY N THUỘC (-3,-2,-1,2)
Ta có: C là số nguyên nên n+10 chia hết cho 2n-8 (n thuộc N)
-> 2(n+10) chia hết cho 2n-8
-> 2n +20 chia hết cho 2n-8
-> (2n+20)-(2n-8) chia hết cho 2n-8
-> 28 chia hết cho 2n-8. Vì 2n chia hết cho 2, 8 chia hết cho 2 nên 2n-8 chia hết cho 2
Vậy \(2n-8\in\left(2;14;28\right)\)
\(2n\in\left(10;22;36\right)\)
\(n\in\left(5;11;18\right)\) vì n = 5 không thõa mãn điều kiện nên \(n\in\left(11;18\right)\)
Ta có \(B=\frac{2n+2+5n+17-3n}{n+2}=\frac{\left(2n+5n-3n\right)+\left(2+17\right)}{n+2}\)
\(=\frac{4n+19}{n+2}=\frac{4n+8+11}{n+2}=\frac{4n+8}{n+2}+\frac{11}{n+2}=4+\frac{11}{n+2}\)
Để B là số tự nhiên \(\Leftrightarrow\frac{11}{n+2}\) là số tự nhiên
\(\Rightarrow\) n + 2 \(\in\) Ư(11) . Vì n là số tự nhiên \(\Leftrightarrow\) n + 2 \(\in\) {1 ; 11}
\(\Leftrightarrow\) n = 9
Ta có: \(\frac{2n+2}{2+n}+\frac{5n+17}{2+n}-\frac{3n}{2+n}=\frac{2n+2+5n+17-3n}{2+n}=\frac{\left(2n+5n-3n\right)+\left(2+17\right)}{2+n}=\frac{4n+19}{2+n}\)
Để B là số tự nhiên thì 4n+19 : 2+n
=> 4*(n+2)-11:2+n
=> 11:2+n hay 2+n thuộc Ư(11)={1;11}
=> n =9.
Vậy để B có giá trị là số nguyên thì n=9
(lưu ý: dấu : tức là chia hết cho)
Chúc bạn học tốt!^_^