K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2019

Bài 2 phải là chứng minh chia hết cho 5 chứ nhỉ 

24 tháng 7 2019

Bài 2:

\(n^5-n\)

\(=n\left(n^4-1\right)\)

\(=n\left(n^2-1\right)\left(n^2+1\right)\)

\(=n\left(n^2-1\right)\left(n^2-4+5\right)\)

\(=n\left(n^2-1\right)\left(n^2-4\right)+5n\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left[n\left(n^2-4\right)+5n\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n^2-1\right)⋮5\)

7 tháng 11 2017

A = n 4   –   2 n 3   –   n 2  +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó  A ⋮ 24 .

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IKBài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EFBài 1:1) Tính nhanh:d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )2)Rút gọn và tính giá trị của biểu thức:b)...
Đọc tiếp

Bài 4: Tam giác ABC vuông tại A, đường cao AH. I, K lần lượt là hình chiếu của H trên AB, AC. M là trung điểm của BC. Chứng minh rằng: AM vuông góc với IK
Bài 5: Hình thang vuông ABCD, góc A= góc B= 90 độ, AB= AD= CD/2. E thuộc AB; EF vuông góc với DE ( F thuộc DC ). Chứng minh rằng: ED= EF

Bài 1:
1) Tính nhanh:
d) D= 100^2+ 103^2+ 105^2+ 94^2- ( 101^2+ 98^2+ 96^2+ 107^2 )
2)Rút gọn và tính giá trị của biểu thức:
b) (x-2)^3-(x-2)(x^2+2x+4)+6(x-2)(x+2)-x(x-1) tại x= 101
c) (x+1)^3-(x+3)(x^2-3x+9)+3(2x-1)^2 tại x= -2
Bài 11: Xác định đa thức f(x) biết f(x) chia hết cho (x-2) dư 5, f(x) chia cho (x-3) dư 7, f(x) chia cho (x-3)(x-2) được thương x^2-1 và có dư
Bài 12: Tìm x tự nhiên sao cho:
a) Giá trị biểu thức x^3+2x-x^2+7 chia hết cho giá trị biểu thức (x^2+1)
b) Giá trị đa thức ( 2x^4-3x^3-x^2+5x-4) chia hết cho giá trị đa thức (x-3)
Bài 13: Tìm x thuộc Z để giá trị biểu thức 8x^2-4x+1 chia hết cho giá trị biểu thức 2x+1
Bài 14: Chứng minh rằng:
a) a^3-a chia hết cho 24a với a là số nguyên tố lớn hơn 3
b) n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc Z
c) n^3-13n chia hết cho 6 với mọi n thuộc Z
d) a^5-a chia hết cho 30 với mọi a thuộc Z

0
2 tháng 10 2019

Bài 1: 

Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)

b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)

\(\Rightarrow ab\equiv2\left(mod3\right)\)

Vậy ab chia cho 3 dư 2 

Cách 2: ( hướng dẫn)

a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )

Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh

Bài 2:

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)

2 tháng 10 2019

cảm ơn bạn lê tài bảo châu nhé

24 tháng 7 2021

a) Ta có (n - 1)(n + 1) - (n - 7)(n - 5) 

= n2 - 1 - (n2 - 12n + 35)

= n2 - 1 - n2 + 12n - 35

= 12n - 36 = 12(n - 3) \(⋮12\forall n\inℤ\)

b) Ta có n(2n - 3) - 2n(n + 2) 

= 2n2 - 3n - 2n2 - 2n 

= - 5n \(⋮5\forall n\inℤ\)

13 tháng 7 2017

Đề sai rồi, tớ sửa + làm luôn:

Ta có: \(n\left(n+1\right).\left(2n+1\right)\)

= \(n\left(n+1\right)\left(n+2+n-1\right)\)

= \(n\left(n+1\right)\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\)

Các số hạng \(n\left(n+1\right)\left(n+2\right);\left(n-1\right)n\left(n+1\right)\)của tổng trên đều là tích của 3 số liên tiếp nên chia hết cho 6.

Vậy \(n\left(n+1\right).\left(2n+1\right)\) chia hết cho 6 với mọi n thuộc Z

12 tháng 7 2017

Chứng minh rằng (n thuộc Z)

a) n2(n + 1) + 2n(n + 1)

= (n + 1)(n2 + 2n)

= n(n + 1)(n + 2) \(⋮\) 6 (với mọi \(n\in Z\))

Vậy n2(n + 1) + 2n(n + 1) chia hết cho 6 (với mọi \(n\in Z\))

b) (2n - 1)3 - (2n - 1)

= (2n - 1)[(2n - 1)2 - 12]

= (2n - 1)(2n - 1 + 1)(2n - 1 - 1)

= 2n(2n - 1)(2n - 2)

= 4n(2n - 1)(n - 1) \(⋮4\left(1\right)\)

Mà (2n - 1)(n - 1) = (n + n - 1)(n - 1) \(⋮2\left(2\right)\)

Từ (1) và (2) suy ra: (2n - 1)3 - (2n - 1) chia hết cho 8 (với mọi \(n\in Z\))

13 tháng 7 2017

Sai rồi ở câu a.