Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{3n}{3n+1}\)
Vì 3n + 1 hơn 3n 1 đơn vị, n \(\in\) Z
\(\Rightarrow\) ƯCLN ( 3n; 3n + 1 ) = 1
\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản
Vậy \(\frac{3n}{3n+1}\) là phân số tối giản ( đpcm )
b, \(\frac{4n+1}{6n+1}=\frac{24n+6}{24n+4}\)
Đề bài sai
Các câu c,d,e,g,h tương tự
Các phân số đó tối giản khi UWCLN của tử và mẫu của nó bằng 1
Vậy bạn hãy chứng minh UWCLN(tử,mẫu)=1
a) ta có:
\(\frac{n+1}{2n+3}\)là phân số tối giản thì:
\(\left(n+1;2n+3\right)=d\)
Điều Kiện;d thuộc N, d>0
=>\(\hept{\begin{cases}2n+3:d\\n+1:d\end{cases}}=>\hept{\begin{cases}2n+3:d\\2n+2:d\end{cases}}\)
=>2n+3-(2n+2):d
2n+3-2n-2:d
hay 1:d
=>d=1
Vỵ d=1 thì.....
Bài 2 :
Để A = (n+2) : (n-5) là số nguyên thì n+2 phải chia hết cho n-5
Mà n-5 chia hết cho n-5
=> (n+2) - (n-5) chia hết cho n-5
=> (n-n) + (2+5) chia hết cho n-5
=> 7 chia hết cho n-5
=> n-5 thuộc Ư(5) = { 1 : -1 ; 7 ; -7 }
Ta có bảng giá trị
n-5 | 1 | -1 | 7 | -7 |
n | 6 | 4 | 12 | -2 |
A | 8 | -6 | 2 | 0 |
KL | TMĐK | TMĐK | TMĐK | TMĐK |
Vậy với n thuộc { -2 ; 4 ; 6 ; 12 } thì A là số nguyên
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Gọi \(d=UCLN\left(12n+1;30n+2\right)\)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\Rightarrow1⋮d\)
Suy ra phân số đã cho là phân số tối giản (đpcm)
Cái sau tương tự nha bạn
Bài 2 \(C=\frac{5}{x-2}\) .DO x nguyên nên để C nhỏ nhất thì x-2 phải là số nguyên âm lớn nhất => x-2=-1 =>x=1
Vậy với x=1 thì C đạt giá trị nhỏ nhất
Cái sau tương tự nha bạn
a , Gọi \(d=ƯCLN\)\(\left(12n+1;30n+2\right)\)
\(\Leftrightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)
\(\Leftrightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản với mọi n .
1. a) Để phân số có giá trị nguyên thì n + 9 phải chia hết cho n - 6
Ta có: n + 9 chia hết cho n - 6
=> n - 6 + 15 chia hết cho n - 6
=> 15 chia hết cho n - 6.
=> n - 6 thuộc Ư(15) = {1; 3; 5; 15}
=> n thuộc {7; 9; 11; 21}
2. Giả sử \(\frac{12n+1}{30n+2}\)không phải là phân số tối giản
=> 12n + 1 và 30n + 2 có UCLN là d (d > 1)
d là ước chung của 12n + 1 và 30n + 2
=> d là ước của 30n + 2 - 2(12n + 1) = 6n
=> d là ước chung của 12n + 1 và 6n => d là ước của 12n + 1 - 2.6n = 1
d là ước của 1 mà d > 1 (vô lý) => điều giả sử trên sai => đpcm.
chứng minh 12n + 1/30n + 2
gọi a là ƯC của 12n + 1 và 30n + 2
=> 12n + 1 chia hết cho a
=> 12n chia hết cho a
1 chia hết cho a
=> a = 1
vậy 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
nên 12n + 1/30n + 2 là phân số tối giản (điều phải chứng minh)
Bài 2:
a)Gọi UCLN(14n+3;21n+4) là d
Ta có:
[3(14n+3)]-[2(21n+4)] chia hết d
=>[42n+9]-[42n+8] chia hết d
=>1 chia hết d
=>d=1. Suy ra 14n+3 và 21n+4 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
b)Gọi UCLN(12n+1;30n+2) là d
Ta có:
[5(12n+1)]-[2(30n+2)] chia hết d
=>[60n+5]-[60n+4] chia hết d
=>1 chia hết d. Suy ra 12n+1 và 30n+2 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
c)Gọi UCLN(3n-2;4n-3) là d
Ta có:
[4(3n-2)]-[3(4n-3)] chia hết d
=>[12n-8]-[12n-9] chia hết d
=>1 chia hết d. Suy ra 3n-2 và 4n-3 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản
d)Gọi UCLN(4n+1;6n+1) là d
Ta có:
[3(4n+1)]-[2(6n+1)] chia hết d
=>[12n+3]-[12n+2] chia hết d
=>1 chia hết d. Suy ra 4n+1 và 6n+1 là 2 số nguyên tố cùng nhau
=>Phân số trên tối giản