Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, phải là cmr: TG AHB=TG AHC
TG AHB và TG AHC có: AH chung; góc AHC=góc AHB (=90 độ) và AB=AC(GT) tùa 3 điều trên =>TG AHB=TG AHC(cgv.ch)(đpcm) và cũng do đó: góc BAH=góc CAH
b,Nối M->N
TG AHM và TG AHN có: AH chung; góc AMH=góc AHN (=90 độ) và góc BAH=góc CAH(cm trên) từ 3 điều trên=>TG AHM = TG AHN(ch.gn)=>AM=AN
Mặt khác TG AMN có AM=AN(cm trên)=>TG AMN(đn tg cân)
c,Ta có: tg ABC có góc A+ góc B+góc C=180 độ(đlí tổng 3 góc tg) mà góc ABC=góc ACB(t/c tg cân)=>góc ABC=góc ACB=180 độ-góc A(1)
Và tg AMN có góc MAN+góc ANM+góc AMN=180 độ mà góc AMN=góc ANM(t/c tg cân)=> góc ANM=góc AMN=180 độ-góc MAN(đlí tổng 3 góc tam giác)(2)
(1) và (2) suy ra: góc ABC=góc ACB=góc ANM=góc AMN(= góc MAN)
góc ABC=góc AMN mà góc ABC và góc AMN là hai góc SLT=>MN ss BC(đpcm)
Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:
\(AB=AC\) (\(\Delta ABC\) cân tại A).
\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\Delta AHB=\) \(\Delta AHC\left(ch-gn\right).\)
\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)
Xét \(\Delta AMH\) vuông tại M và \(\Delta ANH\) vuông tại N:
\(AHchung.\\ \widehat{MAH}=\widehat{NAH}\left(\widehat{BAH}=\widehat{CAH}\right).\\ \Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right).\)
Xét \(\Delta AMN:AM=AN\left(\Delta AMH=\Delta ANH\right).\)
\(\Rightarrow\Delta AMN\) cân tại A.
\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)
Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (\(\Delta ABC\) cân tại A).
\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC.\)
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>NH=MH
AH^2-AN^2=NH^2
BH^2-BM^2=MH^2
mà NH=MH
nên AH^2-AN^2=BH^2-BM^2
=>AH^2+BM^2=AN^2+BH^2
a, Xét tg AHB và tg AHC, có:
AB=AC(tg cân)
góc AHB= góc AHC(=90o)
góc B= góc C(tg cân)
=> tg AHB= tg AHC(ch-gn)
b,Xét tg BMH và tg CNH, có:
góc B= góc C(tg cân)
BH=CH(2 cạnh tương ứng)
góc BMH= góc CNH(=90o)
=> tg BMH= tg CNH(ch-gn)
Xét tg AMH và tg ANH, có:
AH chung.
góc AMH= góc ANH(=90o)
MH=HN(2 cạnh tương ứng)
=> tg AMH= tg ANH(ch- cgv)
=> AM=AN(2 cạnh tương ứng)
=> tg AMN là tg cân.
c, Ta có:tg AMN cân tại A, tg ABC cân tại A nên, suy ra:
Các góc ở đáy bằng nhau: góc B= góc C= góc AMN= góc ANM.
Mà góc AMN và góc B ở vị trí đồng vị nên, suy ra:
MN // BC.
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)
b) Ta có: ΔAHB=ΔAHC(cmt)
nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)
hay \(\widehat{MAH}=\widehat{NAH}\)
Xét ΔMAH vuông tại M và ΔNAH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)(cmt)
Do đó: ΔMAH=ΔNAH(cạnh huyền-góc nhọn)
Suy ra: AM=AN(hai cạnh tương ứng)
Xét ΔMAN có AM=AN(cmt)
nên ΔAMN cân tại A(Định nghĩa tam giác cân)
a,Ta có : Tam giác ABC cân tại A
=>AB=AC(tính chất tam giác cân)
Xét tam giác AHB và tam giác AHC có :
+)AB=AC(cmt)
+)Góc AHB =Góc AHC(=90 độ)
+)AH chung
=>Tam giác AHB và tam giác AHC(ch-cgv)
=>HB=HC(2 cạnh tương ứng)
=>Góc ABH = Góc ACH(2 góc tương ứng)
=>Góc BAH =Góc CAH(2 góc tương ứng)
b,Xét tam giác BHM và tam giác CHN có :
+)Góc BMH=Góc CNH(=90 độ)
+)HB=HC(cmt)
+)Góc ABC =Góc ACB(cmt)
=>Tam giác BMH=Tam giác CHN(ch-gn)
=>BM=CN(2 cạnh tương ứng)
mà AB=AC(cmt)
=>AB-BM=AC-CN
=>AM=AN
=>Tam giác AMN cân tại A(dhnb tam giác cân)
c,Gọi giao điểm AH và MN là O
Xét tam giác AOM và tam giác AON có :
+)AM=AN(cmt)
+)Góc OAM=Góc OAN(cmt)
+)AO chung
=>Tam giác AOM =Tam giác AON(c.g.c)
=>Góc AOM=Góc AON(2 góc tương ứng)
mà góc AOM + góc AON=180 độ (kề bù)
=>Góc AOM = Góc AON(=90 độ)
=>AH vuông góc với MN
mà AH vuông góc với BC
=>BC // MN(tính chất từ vuông góc đến song song)