K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2020

Không biết sao nó ra mấy cái \\n\\n, bạn bỏ qua giúp mình.

\n
6 tháng 5 2020

\"Chương

\n
16 tháng 3 2022

Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:

\(AB=AC\)  (\(\Delta ABC\) cân tại A).

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\Delta AHB=\) \(\Delta AHC\left(ch-gn\right).\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)

Xét \(\Delta AMH\) vuông tại M và \(\Delta ANH\) vuông tại N:

\(AHchung.\\ \widehat{MAH}=\widehat{NAH}\left(\widehat{BAH}=\widehat{CAH}\right).\\ \Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right).\)

Xét \(\Delta AMN:AM=AN\left(\Delta AMH=\Delta ANH\right).\)

\(\Rightarrow\Delta AMN\) cân tại A.

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)

Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC.\)

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>NH=MH

AH^2-AN^2=NH^2

BH^2-BM^2=MH^2

mà NH=MH

nên AH^2-AN^2=BH^2-BM^2

=>AH^2+BM^2=AN^2+BH^2

31 tháng 1 2016

a, phải là cmr: TG AHB=TG AHC

TG AHB và TG AHC có: AH chung; góc AHC=góc AHB (=90 độ) và AB=AC(GT) tùa 3 điều trên =>TG AHB=TG AHC(cgv.ch)(đpcm) và cũng do đó: góc BAH=góc CAH

b,Nối M->N

TG AHM và TG AHN có: AH chung; góc AMH=góc AHN (=90 độ) và góc BAH=góc CAH(cm trên) từ 3 điều trên=>TG AHM = TG AHN(ch.gn)=>AM=AN

Mặt khác TG AMN có AM=AN(cm trên)=>TG AMN(đn tg cân)

c,Ta có: tg ABC có góc A+ góc B+góc C=180 độ(đlí tổng 3 góc tg) mà góc ABC=góc ACB(t/c tg cân)=>góc ABC=góc ACB=180 độ-góc A(1)

Và tg AMN có góc MAN+góc ANM+góc AMN=180 độ mà góc AMN=góc ANM(t/c tg cân)=> góc ANM=góc AMN=180 độ-góc MAN(đlí tổng 3 góc tam giác)(2)

(1) và (2) suy ra: góc ABC=góc ACB=góc ANM=góc AMN(= góc MAN)

góc ABC=góc AMN mà góc ABC và góc AMN là hai góc SLT=>MN ss BC(đpcm)

 

 

25 tháng 1 2022

a, Theo định lí Pytago tam giác AHC vuông tại H

\(AC=\sqrt{AH^2+HC^2}=\sqrt{64+36}=10\)cm 

Xét tam giác ABC có AB = AC nên tam giác ABC cân tại A

mà AH là đường cao đồng thời là đường trung tuyến 

=> HC = HB = 6 cm 

b, Vì tam giác ABC cân tại A => ^ABC = ^ACB 

c, Vì tam giác ABC cân tại A, AH đồng thời là đường phân giác 

=> ^BAH = ^HAC 

Xét tam giác AMH và tam giác ANH có : 

^AMH = ^ANH = 900

AH _ chung 

^BAH = ^NAH ( cmt ) 

Vậy tam giác AMH = tam giác ANH ( ch - gn ) 

=> MH = NH ( 2 cạnh tương ứng ) 

Xét tam giác HMN có MH = NH ( cmt ) 

=> tam giác HMN cân tại H

25 tháng 1 2022

chắc đúng ko đấy bn đây là bài kiểm tra nên tui phải làm đúng

6 tháng 5 2018

â)Ta có :  AB = AC =10 cm (gt)

=> tam giác ABC cân tại A (2 cạnh bên = nhau )

b) Xét tam giác AHB va tam giac AHC ,co : 

\(\widehat{AHB}=\widehat{AHC}=90^O\) ( AH là đường cao ) 

AB =AC =10 cm (gt )

AH là cạnh chung 

Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông ) 

=>\(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng ) 

=>AH là tia phân giác của góc A 

c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác 

Nên :H là trung điểm của BC

=>BH = CH  = \(\frac{BC}{2}\)=12/2 = 6 cm

6 tháng 5 2018

TRẢ LỜI TIẾP CÂU Ở TRÊN NHA  ( HỒI NÃY BẤM NHẦM GỬI TRẢ LỜI ) 

b) Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác  

Nên : H là trung điểm của BC

=> BH =CH =\(\frac{BC}{2}=\frac{12}{2}=6cm\)

Xét : tam giác BMH và tam giác HCN , co :

 BH = CH = 6cm ( chứng minh trên ) 

\(\widehat{M}=\widehat{N}=90^o\left(gt\right)\)

\(\widehat{B}=\widehat{C}\) (Vì tam giác ABC cân tại A nên hai góc ở đáy = nhau ) 

Do do:tm giác BHM = tam giác HCN

đ) Áp dụng định lý pytago vào tam giác  AHC vuông tại H 

\(AH^2=AC^2-HC^2\) =\(10^2-6^2\)=\(100-36=64\)

=>\(AH=\sqrt{64}=8cm\)  OK CHÚC BẠN HỌC TỐT 

15 tháng 3 2020

Bạn ơi có gải ko đăng lên đi

12 tháng 4 2020

1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)