K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 9 2020

1.

\(A\subset B\Leftrightarrow\left\{{}\begin{matrix}2m-1\le-1\\2m+3\ge1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\m\ge-1\end{matrix}\right.\) \(\Rightarrow-1\le m\le0\)

\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}-1\le2m-1\\2m+3\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le-1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn yêu cầu

\(A\cap B\) nhưng bằng cái gì? Chỗ này đề thiếu

2.

a.

\(B\subset A\Leftrightarrow\left\{{}\begin{matrix}-4\le m-7\\m\le3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge3\\m\le3\end{matrix}\right.\) \(\Leftrightarrow m=3\)

b.

\(A\cup B=A\Leftrightarrow B\subset A\Leftrightarrow\left\{{}\begin{matrix}m\ge-3\\m\le1\\-4\le-3\end{matrix}\right.\) \(\Rightarrow-3\le m\le1\)

c.

\(A\backslash B=\varnothing\Leftrightarrow A\subset B\Leftrightarrow\left\{{}\begin{matrix}m-1< 5\\m-1\ge3\end{matrix}\right.\) \(\Rightarrow4\le m< 6\)

29 tháng 9 2020

Thanks a lot!

NV
26 tháng 7 2021

\(A\cap B=\varnothing\Leftrightarrow m< 2\)

\(A\cap B\ne\varnothing\Leftrightarrow m\ge2\)

\(A\in B\Leftrightarrow m\ge4\)

12 tháng 10 2021

Bài 1:
Để A giao B bằng rỗng thì \(\left[{}\begin{matrix}m+3< -3\\2m-1>6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -6\\m>\dfrac{7}{2}\end{matrix}\right.\)

NV
15 tháng 9 2021

\(A\cap B\ne\varnothing\Leftrightarrow\left[{}\begin{matrix}m+1< 2m-1< m+3\\m+1< 2m< m+3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2< m< 4\\1< m< 3\end{matrix}\right.\) \(\Rightarrow1< m< 4\)

17 tháng 9 2021

Dạ em cảm ơn ạ

3 tháng 10 2021

Dễ thấy nếu \(A\cap B=\varnothing\Rightarrow A\in[-3;3)\Rightarrow\left\{{}\begin{matrix}m-1\ge-3\\\dfrac{m+3}{2}< 3\end{matrix}\right.\)

                                                               \(\Leftrightarrow-2\le m< 3\)

Do đó để \(A\cap B\ne\varnothing\Rightarrow m\notin[-2;3)\Rightarrow\left[{}\begin{matrix}m< -2\\m\ge3\end{matrix}\right.\)

 

18 tháng 12 2020

a, \(A\subset B\Leftrightarrow\left\{{}\begin{matrix}m+3\ge5\\2m-1< -4\end{matrix}\right.\Rightarrow m\in\left\{\varnothing\right\}\)

b, \(B\subset A\Leftrightarrow\left\{{}\begin{matrix}m+3\le5\\2m-1>-4\end{matrix}\right.\Leftrightarrow-\dfrac{3}{2}< m\le2\)

c, \(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}2m-1>5\\m+3\le-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m>3\\m\le-7\end{matrix}\right.\)

d, \(A\cup B\) là một khoảng \(\Leftrightarrow\left\{{}\begin{matrix}m+3>5\\2m-1\le5\end{matrix}\right.\Leftrightarrow2< m\le3\)

Để A giao B=rỗng thì

2m-4<=2 hoặc -vô cùng>5(vô lý)

=>2m<=6

=>m<=3

A(m-1;-1); B(2;2-2m); C(m+3;3)

\(\overrightarrow{AB}=\left(2-m+1;2-2m+1\right)\)

=>\(\overrightarrow{AB}=\left(3-m;3-2m\right)\)

\(\overrightarrow{AC}=\left(m+3-m+1;3+1\right)\)

=>\(\overrightarrow{AC}=\left(4;4\right)\)

Để A,B,C thẳng hàng thì \(\dfrac{3-m}{4}=\dfrac{3-2m}{4}\)

=>3-m=3-2m

=>m=0

NV
4 tháng 1

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(3-m;3-2m\right)\\\overrightarrow{AC}=\left(4;4\right)\end{matrix}\right.\)

3 điểm A;B;C thẳng hàng khi và chỉ khi \(\overrightarrow{AB}=k\overrightarrow{AC}\) với \(k\ne0\)

Hay \(\dfrac{3-m}{4}=\dfrac{3-2m}{4}\Rightarrow m=0\)