Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 2\(xy\) - 2\(x\) + 3\(y\) = -9
(2\(xy\) - 2\(x\)) + 3\(y\) - 3 = -12
2\(x\)(\(y-1\)) + 3(\(y-1\)) = -12
(\(y-1\))(2\(x\) + 3) = -12
Ư(12) = {-12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12}
Lập bảng ta có:
\(y\)-1 | -12 | -6 | -4 | -3 | -2 | -1 | 1 | 2 | 3 | 4 | 6 | 12 |
\(y\) | -11 | -5 | -3 | -2 | -1 | 0 | 2 | 3 | 4 | 5 | 7 | 13 |
2\(x\)+3 | 1 | 2 | 3 | 4 | 6 | 12 | -12 | -6 | -4 | -3 | -2 | -1 |
\(x\) | -1 | -\(\dfrac{1}{2}\) | 0 | \(\dfrac{1}{2}\) | \(\dfrac{3}{2}\) | \(\dfrac{9}{2}\) | \(-\dfrac{15}{2}\) | \(-\dfrac{9}{2}\) | -\(\dfrac{7}{2}\) | -3 | \(-\dfrac{5}{2}\) | -2 |
Theo bảng trên ta có: Các cặp \(x\);\(y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (-1; -11); (0; -3); (-3; 5); ( -2; 13)
b, (\(x+1\))2(\(y\) - 3) = -4
Ư(4) = {-4; -2; -1; 1; 2; 4}
Lập bảng ta có:
\(\left(x+1\right)^2\) | - 4(loại) | -2(loại) | -1(loại) | 1 | 2 | 4 |
\(x\) | 0 | \(\pm\)\(\sqrt{2}\)(loại) | 1; -3 | |||
\(y-3\) | 1 | 2 | 4 | -4 | -2 | -1 |
\(y\) | -1 | 2 |
Theo bảng trên ta có: các cặp \(x;y\) nguyên thỏa mãn đề bài là:
(\(x;y\)) = (0; -1); (-3; 2); (1; 2)
x(x + 3) = 0
=> \(\orbr{\begin{cases}x=0\\x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=0-3\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-3\end{cases}}\)
(x - 2) (5 - x) = 0
=> \(\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0+2\\x=5-0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
(x - 1) (x2 + 1) = 0
=> \(\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0+1\\x^2=0-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x^2=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
x(x+3) = 0
→ x = 0
hoặc x + 3 = 0
⇒ x = 0
hoặc x = -3
Vậy x ∈ { 0 ; -3 }
( x -2 ) ( 5 -x ) = 0
⇒ x - 2 = 0
hoặc 5 - x = 0
⇒ x = 2
hoặc x= 5
Vậy x∈ { 2 ; 5 }
a, 2x + 35 -x+27=0
x +62=0
x=-62
b, 2x -41 -3x + 23 =0
-x -18=0
-x=18
x=-18
c, 4x -12-3x-15= -124
x -27=-124
x= -97
d, Suy ra x+3 =0 hoặc 2x-18=0
x=-3 hoặc 2x=18 => x=9
vậy x=-3 hoặc x=9
a) \(2\dfrac{3}{4}-x=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{11}{4}-x=\dfrac{3}{4}\)
\(\Rightarrow x=\dfrac{11}{4}-\dfrac{3}{4}=\dfrac{8}{4}=2\)
b) \(x:\dfrac{5}{6}=-\dfrac{3}{5}\)
\(\Rightarrow x=-\dfrac{3}{5}.\dfrac{5}{6}=-\dfrac{15}{30}=-\dfrac{1}{2}\)
c) \(1\dfrac{1}{3}+\dfrac{2}{3}:x=1\)
\(\Rightarrow\dfrac{2}{3}:x=1-1\dfrac{1}{3}\)
\(\Rightarrow\dfrac{2}{3}:x=-\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{2}{3}:-\dfrac{1}{3}\)
\(\Rightarrow x=-2\)
d) \(x-\dfrac{1}{9}=\dfrac{8}{3}\)
\(\Rightarrow x=\dfrac{8}{3}+\dfrac{1}{9}\)
\(\Rightarrow x=\dfrac{25}{9}\)
e) \(\dfrac{1}{2}x+650\%x-x=-6\)
\(\Rightarrow\dfrac{1}{2}x+\dfrac{13}{2}x-x=-6\)
\(\Rightarrow x\left(\dfrac{1}{2}+\dfrac{13}{2}-1\right)-6\)
\(\Rightarrow6x=-6\)
\(\Rightarrow x=\dfrac{-6}{6}=-1\)
g) \(2\left(x-\dfrac{1}{2}\right)+3\left(-1+\dfrac{x}{3}\right)=x\left(\dfrac{2}{x}-1\right)\) \(\text{Đ}K:x\ne0\)
\(\Rightarrow2x-1-3+x=2-x\)
\(\Rightarrow3x-4=2-x\)
\(\Rightarrow3x+x=2+4\)
\(\Rightarrow4x=6\)
\(\Rightarrow x=\dfrac{6}{4}=\dfrac{3}{2}\)
a) \(\left(x-5\right)^{12}=\left(x-5\right)^{10}\)
\(\Rightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)
\(\Rightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0^{10}\\\left(x-5\right)^2=0+1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0+5\\\left(x-5\right)^2=1^2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x-5=\pm1\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x=1+5\\x=-1+5\end{cases}}\)
\(\Rightarrow x=5;\orbr{\begin{cases}x=4\\x=6\end{cases}}\)
Vậy x = 4 hoặc x = 5 hoặc x = 6
\(a)\left(x-5\right)^{12}=\left(x-5\right)^{10}\)
\(\Leftrightarrow\left(x-5\right)^{12}-\left(x-5\right)^{10}=0\)
\(\Leftrightarrow\left(x-5\right)^{10}\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(x-5\right)^{10}=0\\\left(x-5\right)^2-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\\left(x-4\right)\left(x-6\right)=0\end{cases}}\)
[ ra \(\left(x-4\right)\left(x-6\right)\)do \(\left(x-5\right)^2-1=\left(x-5-1\right)\left(x-5+1\right)=\left(x-6\right)\left(x-4\right)\)]
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=6\end{cases}}\)
_Minh ngụy_