Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: |x-1|<1/2
=>x-1>-1/2 và x-1<1/2
=>x>1/2 và x<3/2
=>1/2<x<3/2
b: Ta có: |2x+5|>5/2
=>2x+5>5/2 hoặc 2x+5<-5/2
=>2x>-5/2 hoặc 2x<-15/2
=>x>-5/4 hoặc x<-15/4
c: Ta có: |x-5|<3
=>x-5>-3 và x-5<3
=>x>2 và x<8
=>2<x<8
mà x là số nguyên
nên \(x\in\left\{3;4;5;6;7\right\}\)
\(c,Đặt\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=k.b\)
\(\Rightarrow c=d.k\)
\(-Tacó:\frac{2a-3b}{2a+3b}=\frac{2k.b-3b}{2k.b+3b}=\frac{b.\left(2k-3\right)}{b\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(1\right)\)
\(-Tacó:\frac{2c-3d}{2c+3d}=\frac{2d.k-3d}{2d.k+3d}=\frac{d.\left(2k-3\right)}{d.\left(2k+3\right)}=\frac{2k-3}{2k+3}\left(2\right)\)
\(Từ\left(1\right),\left(2\right)\Rightarrow\frac{2a-3b}{2a+3b}=\frac{2c-3d}{2c+3d}\)
A, bạn ơi mình biết làm hết r
B,cài này dễ lằm bạn nghĩ đi okeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
1)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}+1=\frac{c}{d}+1\Leftrightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow ac-ad=ac-bc\Leftrightarrow a\left(c-d\right)=c\left(a-b\right)\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
2) Gọi độ dài các cạnh của tam giác đó là a,b,c thì a : b : c = 3 : 4 : 5 ; a + b + c = 36
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{36}{12}=3\Rightarrow\hept{\begin{cases}a=3.3=9\\b=3.4=12\\c=3.5=15\end{cases}}\).Vậy tam giác đó có 3 cạnh là 9 cm ; 12 cm ; 15 cm
3)\(\hept{\begin{cases}a:b:c:d=3:4:5:6\\a+b+c+d=3,6\end{cases}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{d}{6}=\frac{a+b+c+d}{3+4+5+6}=\frac{3,6}{18}=0,2}\)
=> a = 0,2.3 = 0,6 ; b = 0,2.4 = 0,8 ; c = 0,2.5 = 1 ; d = 0,2.6 = 1,2
4)\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:5=\frac{y}{2}:5\Leftrightarrow\frac{x}{15}=\frac{y}{10}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}:2=\frac{z}{7}:2\Leftrightarrow\frac{y}{10}=\frac{z}{14}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{14}=\frac{x+y+z}{15+10+14}=\frac{184}{39}=4\frac{28}{39}\Rightarrow\hept{\begin{cases}x=4\frac{28}{39}.15=70\frac{10}{13}\\y=4\frac{28}{39}.10=47\frac{7}{39}\\z=4\frac{28}{39}.14=66\frac{2}{39}\end{cases}}\)