K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2018

\(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=\left(a+b-a+b\right)\left(a+b-a-b\right)\)

\(=2a.2b=4ab\)

=> câu trả lời là a . 4ab

NV
22 tháng 3 2021

Tất cả các câu này đều có thể chứng minh bằng phép biến đổi tương đương:

a.

\(\Leftrightarrow a^{10}+b^{10}+a^4b^6+a^6b^4\le2a^{10}+2b^{10}\)

\(\Leftrightarrow a^{10}-a^6b^4+b^{10}-a^4b^6\ge0\)

\(\Leftrightarrow a^6\left(a^4-b^4\right)-b^6\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^6-b^6\right)\left(a^4-b^4\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)\left(a^4+a^2b^2+b^4\right)\left(a^2-b^2\right)\left(a^2+b^2\right)\ge0\)

\(\Leftrightarrow\left(a^2-b^2\right)^2\left(a^2+b^2\right)\left(a^4+a^2b^2+b^4\right)\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow\left(\dfrac{a^2}{4}+b^2+c^2-ab+ac-2bc\right)+b^2-2b+1+c^2\ge0\)

\(\Leftrightarrow\left(\dfrac{a}{2}-b+c\right)^2+\left(b-1\right)^2+c^2\ge0\) (luôn đúng)

NV
22 tháng 3 2021

c.

\(\Leftrightarrow a^2+4b^2+4c^2-4ab-8bc+4ac\ge0\)

\(\Leftrightarrow\left(a-2b+2c\right)^2\ge0\) (luôn đúng)

d.

\(\Leftrightarrow4a^4-8a^3+4a^2+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(2a^2-2a\right)^2+\left(a-1\right)^2\ge0\) (luôn đúng)

Gọi 

( a + b )2 = c

( a - b )2 = d

= c2 - d2 

Áp dụng hằng đẳng thức số a2 - b2 = ( a + b ) ( a - b ) ta có :

c2 - d2 

= ( c - d ) ( c + d )

= [ ( a +b ) - ( a - b ) ] . [ ( a + b ) - ( a - b ) ]

= 2a . 2b

= 4ab

Study well 

bn giải thích tại sao lại bằng 2a.2b zậy?

2 tháng 11 2017

2a2b+4ab2-a2c+ac2-4b2c+2bc2-4abc

=2ab(a+2b)-ac(a+2b)+c2(a+2b)-2bc(a+2b)

=(a+2b)(2ab-ac+c2-2bc)

=(a+2b)\(\left[a\left(2b-c\right)-c\left(2b-c\right)\right]\)

=(a+2b)(2b-c)(a-c)