Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x, y, z (máy) lần lượt là số mấy san của đội thứ nhất, thứ hai và thứ ba
Vì số máy tỉ lệ nghịch với thời gian hoàn thành công việc nên ta có: 4x = 6y = 8z
Suy ra: \(\dfrac{x}{6}\) =\(\dfrac{y}{4}\) =\(\dfrac{z}{3}\)
Vì số máy của đội thứ nhất nhiều hơn đội thứ hai 2 máy nên ta có: x−y = 2 (máy)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{6}\)=\(\dfrac{y}{4}\)=\(\dfrac{z}{3}\)=\(\dfrac{x-y}{6-4}\)=\(\dfrac{2}{2}\) =1
Suy ra: x = 1 . 6 = 6; y = 1 . 4 = 4; z = 1 . 3 = 3 (thoả mãn điều kiện)
Vậy số máy san của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là 6 máy, 4 máy, 3 máy.
Gọi x,y,z lần lượt là ba đội máy san
Ta có: 8x=6y=4z và z-y=8
\(\Rightarrow\)8x/24=6y/24=4z/24 và z-y=8
\(\Rightarrow\)x/3=y/4=z/6 và z-y=8
ADTCDTSBN, ta có:
y/4=z/6 =z-y/6-4=8/2=4
x/3=4 thì x =12
y/4=4 thì y=16
z/6=4 thì z=24
Vậy: đội 1 có 12 máy, đội 2 có 16 máy, đội 3 có 24 máy
Gọi số máy của 3 đội 1,2,3 là x,y,z (máy) x,y,z\(\inℕ^∗\)
TBR, ta có : số máy và thời gian là 2 ĐLTLN
\(\Rightarrow\)8x=6y=4z
\(\Rightarrow\frac{x}{\frac{1}{8}}\)=\(\frac{z}{\frac{1}{6}}=\frac{y}{\frac{1}{4}}\)
Ấp dụng tính chất của dãy tỉ số bằng nhau .TC
\(\frac{x}{\frac{1}{8}}=\frac{y}{\frac{1}{6}}=\frac{z}{\frac{1}{4}}=\)\(\frac{z}{\frac{1}{4}}-\frac{y}{\frac{1}{6}}=\frac{8}{\frac{1}{12}}=96\)
\(\Rightarrow\frac{x}{\frac{1}{8}}=96\Rightarrow x=\frac{1}{8}.96=12\left(TM\right)\)
\(\Rightarrow\frac{y}{\frac{1}{6}}=96\Rightarrow y=\frac{1}{6}.96=16\left(TM\right)\)
MÀ \(\frac{z}{\frac{1}{4}}=\frac{y}{\frac{1}{6}}\Rightarrow\frac{z}{\frac{1}{4}}=96\Rightarrow z=\frac{1}{4}.96=24\left(TM\right)\)
Vậy số máy của 3 đội 1,2,3 lần lượt là 12,16,24 máy
gọi số máy của ba đội lần lượt là: a;b;c
ta có: 8a=6b=4c
\(\dfrac{a}{\dfrac{1}{8}}\)= \(\dfrac{b}{\dfrac{1}{6}}\) = \(\dfrac{c}{\dfrac{1}{4}}\)
sau đó thì cậu áp dụng tính chất dãy tỉ số bằng nhau, chỉ khác ở chỗ là phần mẫu là phân số nên cậu quy đồng rồi tính nhé
Gọi a,b,c là số máy của mỗi đội
Vì số máy càng tăng thì số ngày càng giảm và ngược lại
nên a,b,c tỉ lệ nghịch với 3,4,6
=> \(\frac{a}{\frac{1}{3}}\)=\(\frac{b}{\frac{1}{4}}\)=\(\frac{c}{\frac{1}{6}}\) và a-b = 4
Áp dụng tính chất dãy tỉ số bằng nhau
Ta có: \(\frac{a}{\frac{1}{3}}\)=\(\frac{b}{\frac{1}{4}}\)=\(\frac{c}{\frac{1}{6}}\)=\(\frac{a-b}{\frac{1}{3}-\frac{1}{4}}\)=\(\frac{4}{\frac{1}{12}}\)=48
\(\frac{a}{\frac{1}{3}}\)=48 => a = 16
\(\frac{b}{\frac{1}{4}}\)=48 =>: b = 12
\(\frac{c}{\frac{1}{6}}\)=48 => c = 8
Vậy số máy mỗi đội lần lượt là 16 máy; 12 máy; 8 máy
Gọi \(a,b,c\) lần lượt là số máy của đội \(I,II,III\)
Theo đề , ta có : \(a-b=4\)
Do số máy và số ngày là hai đại lượng tỉ lệ nghịch với nhau nên ta có :
\(3a=4b=6c\)
\(\Rightarrow\frac{3a}{12}=\frac{4b}{12}=\frac{6c}{12}\)
\(\Rightarrow\frac{a}{4}=\frac{b}{3}=\frac{c}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{a}{4}=\frac{b}{3}=\frac{c}{2}=\frac{a-b}{4-3}=\frac{4}{1}=4\)
\(\Rightarrow a=16;b=12;c=8\)
Vậy số máy cày của đội \(I,II,III\) lần lượt là \(16;12;8\) máy .