Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(a,4x^2+9y^2+4x-24y+17=0\)
\(\Rightarrow\left(4x^2+4x+1\right)+\left(9y^2-24y+16\right)=0\)
\(\Rightarrow\left(2x+1\right)^2+\left(3y-4\right)^2=0\)
\(\left(2x+1\right)^2\ge0;\left(3y-4\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(2x+1\right)^2=0\\\left(3y-4\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}2x+1=0\\3y-4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{4}{3}\end{cases}}}\)
bai2 :cmr
a, a^3+b^3=(a+b)^3-3ab.(a+b)
VP= \(\left(a+b\right)^3-3ab\left(a+b\right)\)
=\(a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\)
=VT
b.a^3-b^3=(a-b)^3+3ab,(a-b)
\(VP=\left(a-b\right)^3+3ab\left(a-b\right)\)
=\(a^3-3a^2b+ab^2.3-b^3+3a^2b-3ab^2=a^3-b^3\)
=VT
=> ĐPCM
bài 1.
a) = 8x^3+4x^2y+2xy^2-4x^2y-2xy^2-y^3-(8x^3-4x^2y+2xy^2+4x^2y-2xy^2+y^3)
= 8x3+4x2y+2xy2-4x2y-2xy2-y3 - 8x3+4x2y-2xy2-4x2y+2xy2-y3
=-8x2y-6y3
b) = 27x3-18x2y+12xy2+18x2y-12xy2+8y3-27x3
=8y
a) \(xy+x-y=2\)
\(\Leftrightarrow x\left(y+1\right)-\left(y+1\right)=1\)
\(\Leftrightarrow\left(x-1\right)\left(y+1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=y+1=1\\x-1=y+1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2;y=0\\x=0;y=-2\end{cases}}\)
b) \(x-2xy+y=0\)
\(\Leftrightarrow2x-4xy+2y=0\)
\(\Leftrightarrow2x\left(1-2y\right)-\left(1-2y\right)=-1\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=-1\)
Tương tự nha
c) \(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)
\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)y-2\left(x-2\right)=3\)
\(\Leftrightarrow\left(x-2\right)\left(x+y-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=0\end{cases}}\)
ê tui cũng có cái hình con mèo nay nè