Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{135}=2^{3.45}=\left(2^3\right)^{45}=8^{45}\)
\(3^{90}=3^{2.45}=\left(3^2\right)^{45}=9^{45}\)
Vì \(8^{45}< 9^{45}\)nên \(2^{135}< 3^{90}\)
b) \(4^{75}=4^{3.25}=\left(4^3\right)^{25}=64^{25}\)
\(3^{100}=3^{4.25}=\left(3^4\right)^{25}=81^{25}\)
Vì \(64^{25}< 81^{25}\)nên \(4^{75}< 3^{100}\)
c) \(4^{100}=4^{4.25}=\left(4^4\right)^{25}=256^{25}\)
\(9^{75}=9^{3.25}=\left(9^3\right)^{25}=729^{25}\)
Vì \(256^{25}< 729^{25}\)nên \(^{4^{100}< 9^{75}}\)
a) 544 giữ nguyên
2112 = ( 213 )4 = 92614
vì 54 < 9261 nên 544 < 2112
Ý a làm như bạn Huy Hoàng indonaca là đúng.
b) Ta có:
\(1+2+...+100=5050=5^2.202\)
\(5^8=5^2.15625\)
Vì \(202< 15625\) => \(1+2+...+100< 5^8\)
a) \(3^{21}\)và \(2^{31}\)
\(3^{21}\)=\(3.3^{20}\)=\(3.9^{10}\)
\(2^{31}=2.2^{30}=2.8^{10}\)
Vì \(3.9^{10}\)>\(2.8^{10}\)\(\Rightarrow3^{21}>2^{31}\)
b)\(2^{300}\)và \(3^{200}\)
\(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì \(8^{100}< 9^{100}\Rightarrow2^{300}< 3^{200}\)
c)\(32^9\)và\(18^{13}\)
\(32^9=2^{5.9}=2^{45}\)
\(18^{13}>16^{13}=2^{4.13}=2^{52}\)
\(\Rightarrow2^{45}< 2^{52}< 18^{13}\)\(\Rightarrow2^{45}< 18^{13}\Rightarrow32^9< 18^{13}\)
a) ta có: 321 = 3.320 = 3.910
231 = 2.230 = 2.810
vì 2.810 < 3.910 => 231 < 321
b) ta có: 2300 = (23)100 = 8100
3200 = (32)100 = 9100
vì 8100 < 9100 => 2300 < 3200
c) ta có: 329 = (25)9 = 245
1813 > 1613 = (24)13 = 252
ta thấy 245 < 252 < 1813
Nên 329 < 1813
Bài 1:
Ta có: -321<-320=-(32)10=-910
=>-321<-910(1)
-231<-230=-(23)10=-810
=>-231<-810(2)
mà 9>8 nên -910<-810 (3)
từ (1) ; (2) và (3) ta được:
-321<-231
Bài 2:
Ta có: 33334444=(3.1111)4444=34444.11114444=(34)1111.11114444=811111.11114444
44443333=(4.1111)3333=43333.11113333=(43)1111.11113333=641111.11113333
Vì 81>64 và 4444>3333 nên 811111.11114444>641111.11113333
hay 33334444>44443333