Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: m^2+1>=1>0 với mọi m
=>y=(m^2+1)x-5 luôn là hàm số bậc nhất
b: Do m^2+1>0 với mọi m
nên hàm số y=(m^2+1)x-5 đồng biến trên R
2: m^2-m+1
=m^2-m+1/4+3/4
=(m-1/2)^2+3/4>=3/4>0 với mọi m
=>y=(m^2-m+1)x+m luôn là hàm số bậc nhất và luôn đồng biến trên R
a: Để hàm số là hàm số bậc nhất thì 2m-3<>0
hay m<>3/2
b: Để hàm số đồng biến thì 2m-3>0
hay m>3/2
Để hàm số nghịch biến thì 2m-3<0
hay m<3/2
Để y là hàm số bậc nhất thì:
\(\left(-m^2+2m-1\right)\ne0\)
=> \(-\left(m-1\right)^2\ne0\)
=> m ≠ 1
Để hàm số là hàm số bậc nhất thì \(-m^2+2m-1\ne0\)
\(\Leftrightarrow\left(m-1\right)^2\ne0\)
hay \(m\ne1\)
Lời giải:
Để hàm số là hàm bậc nhất thì $1-m^2\neq 0$
$\Leftrightarrow m^2\neq 1\Leftrightarrow m\neq \pm 1$
b.
Để hàm nghịch biến thì $1-m^2<0$
$\Leftrightarrow (1-m)(1+m)<0$
$\Leftrightarrow m> 1$ hoặc $m< -1$
Để hàm đồng biến thì $1-m^2>0$
$\Leftrightarrow (1-m)(1+m)>0$
$\Leftrightarrow -1< m< 1$
Bài 1:
Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0
=>m<>2
a=2-m
b=-2
Bài 2:
a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0
=>m>5
b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0
=>m<5
Bài 3:
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)
b: Để (d1) cắt (d2) thì \(3-m\ne2\)
=>\(m\ne1\)
c: Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)
=>m=2
\(y=\left(m-2\right)x+m+3\left(d_1\right);y=-x+2\left(d_2\right);y=2x-1\left(d_3\right)\)
Xét phương trình hoành độ giao điểm A của hai đường \(d_3,d_2\)có:
\(-x+2=2x-1\Leftrightarrow3x=3\Leftrightarrow x=1\Rightarrow y=1\Rightarrow A\left(1,1\right)\)
Để 3 đường thẳng đồng quy tại A thì tọa độ A thỏa mãn phương trình d1 nên:
\(\left(m-2\right).1+m+3=1\Leftrightarrow2m=1\Leftrightarrow m=\frac{1}{2}\)
à thiếu chút còn điều kiện m+1 khác 0 nên m sẽ khác -1
thêm đk đó vô xong loại 1 nghiệm của m đi
m=1 nhá
chị trả lời bài của em đi ạ