Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B2:
\(A=9+99+999+...+999...9\left(20\text{ chữ số }9\right).\)
\(=\left(10-1\right)+\left(100-1\right)+\left(1000-1\right)+...+\left(1000...0-1\right)\left(21\text{ chữ số }0\right) \)
\(=\left(10+100+1000+...+1000...0\left(21\text{ chữ số }0\right)\right)-\left(1+1+1+...+1\right)\left(21\text{ số }1\right)\)
\(=11....10\left(20\text{ chữ số 1}\right)-21\)
\(=11...1089\left(19so1\right)\)
a) \(\overline {12x02y} \) chia hết cho 2 và 5 khi chữ số tận cùng của nó là 0.
=> y = 0
\(\overline {12x020} \) chia hết cho 3 khi tổng các chữ số của nó cũng chia hết cho 3.
Nên (1 + 2 + x + 0 + 2 + 0)\( \vdots \)3
=> (x + 5) \( \vdots \) 3 và \(0 \le x \le 9\)
=> x\( \in \) {1; 4; 7}
Vậy để \(\overline {12x02y} \) chia hết cho 2, 3 và cả 5 thì y = 0 và x \( \in \){1; 4; 7}.
b) \(\overline {413x2y} \) chia hết cho 5 mà không chia hết cho 2 khi chữ số tận cùng của nó là 5
=> y = 5
\(\overline {413x25} \)chia hết cho 9 khi tổng các chữ số của nó cũng chia hết cho 9
Nên (4 + 1 + 3 + x + 2 + 5) \( \vdots \)9
=> (x + 15) \( \vdots \)9 và \(0 \le x \le 9\)
=> x = 3.
Vậy \(\overline {413x2y} \) chia hết cho 5 và 9 mà không chia hết cho 2 thì x = 3 và y = 5.
a/ \(\overline{53x8y}⋮2\) => y chẵn
\(\overline{53x8y}\) chia 5 dư 3 \(\Rightarrow y=\left\{3;8\right\}\) do y chẵn => y=8
\(\Rightarrow\overline{53x8y}=\overline{53x88}⋮9\Rightarrow5+3+x+8+8=x+24⋮9\Rightarrow x=3\)
b/ \(\overline{x184y}\) chia 2 có dư => y lẻ
\(\overline{x184y}⋮5\Rightarrow y=\left\{0;5\right\}\) do y lẻ => y=5
\(\Rightarrow\text{}\overline{x184y}=\overline{x1845}⋮9\Rightarrow x+1+8+4+5=x+18⋮9\Rightarrow x=\left\{0;9\right\}\)
\(\overline{14xy8}\) có chữ số tận cùng là 8 nên không chia hết cho 5
Vậy không tìm được x; y thỏa mãn đề bài
------------------------
\(\overline{x184}\) có chữ số tận cùng là 4 nên không chia hết cho 5
Vậy không tìm được x; y thỏa mãn đề bài