Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi d=UCLN(6n-7;n-1)
\(\Leftrightarrow6n-7-6n+6⋮d\)
\(\Leftrightarrow-1⋮d\)
=>d=1
Do đó: \(\dfrac{6n-7}{n-1}\) là phân số tối giản
b: \(\dfrac{20}{48}=\dfrac{5}{12}=\dfrac{10}{24}=\dfrac{15}{36}=\dfrac{25}{60}=\dfrac{30}{72}=\dfrac{35}{84}=\dfrac{40}{96}\)
5n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮65n2+1⋮6=>5n2−5⋮6=>(n−1)(n+1)⋮6 *
Giả sử n chẵn =>(n−1)(n+1)(n−1)(n+1) không chia hết 2 (trái với *)
=> n nguyên tố với 2 =>\(\frac{n}{2}\) tối giản
Giả sử n chia hết 3 => (n−1)(n+1)(n−1)(n+1) không chia hết 3 (trái với *)
=> n nguyên tố với 3 =>\(\frac{n}{3}\) tối giản
a) Giả sử phân số \(\frac{6n-7}{n-1}\) chưa tối tối giản
=> 6n -7 và n - 1 có ước chung là số nguyên tố
Gọi d = ƯC(6n - 7; n - 1)
\(\Leftrightarrow\hept{\begin{cases}6n-7⋮d\\n-1⋮d\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6n-7⋮d\\6n-6⋮d\end{cases}}\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(6n-7;n-1\right)=1\)