K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2022

Bài 2: 

a: =>x-3<=0

=>x<=3

b: TH1: x>=-1/2

=>2x+1+x=4

=>3x+1=4

=>x=1(nhận)
TH2: x<-1/2

=>-2x-1+x=4

=>-x-1=4

=>-x=5

=>x=-5(nhận)

c: =>|x-3|+x-5=0

TH1: x>=3

Pt sẽ là x-3+x-5=0

=>2x-8=0

=>x=4(nhận)
TH2: x<3

Pt sẽ là 3-x+x-5=0

=>-2=0(loại)

9 tháng 10 2016

a.  x=1      y= -3

b.  x=5      y=7/2

c.  x= -1    y= -1/2

d.  x=1/4   y= 1/4

16 tháng 10 2016

a) x = 1    

y = -3

b) x = 5

y = 7/2

c) x = -1

y = -1/2

d) x = 1/4 

y = 1/4

nha bn

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

23 tháng 8 2021

Ta có : \(\left(3x-\frac{y}{5}\right)^2\ge0;\left(2y+\frac{3}{7}\right)^2\ge0\)

\(=>\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2\ge0\)

Mà \(\left(3x-\frac{y}{5}\right)^2+\left(2y+\frac{3}{7}\right)^2=0\)nên dấu "=" xảy ra 

\(< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\2y+\frac{3}{7}=0\end{cases}}< =>\hept{\begin{cases}3x-\frac{y}{5}=0\\y=-\frac{3}{14}\end{cases}}\)

\(< =>\hept{\begin{cases}x=-\frac{1}{70}\\y=-\frac{3}{14}\end{cases}}\)

23 tháng 8 2021

Ta có : \(\left(x+y-\frac{1}{4}\right)^2\ge0;\left(x-y+\frac{1}{5}\right)^2\ge0\)

Cộng theo vế ta được : \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2\ge0\)

Mà \(\left(x+y-\frac{1}{4}\right)^2+\left(x-y+\frac{1}{5}\right)^2=0\)nên dấu "=" xảy ra 

\(< =>\hept{\begin{cases}y+x=\frac{1}{4}\\y-x=\frac{1}{5}\end{cases}}< =>\hept{\begin{cases}y=\frac{9}{40}\\x=\frac{1}{40}\end{cases}}\)

24 tháng 7 2016

b,  \(\Leftrightarrow x\left(x-3\right)+\left(x+1\right)\left(x-3\right)=0\)

     \(\Leftrightarrow\left(x-3\right)\left(x+x+1\right)=0\)

     \(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)

     \(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\2x+1=0\end{array}\right.\) 

     \(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\2x=-1\end{array}\right.\)

     \(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{-1}{2}\end{array}\right.\)

     

24 tháng 7 2016

a)  |x-y|+|x-9|=0

    =>   

|x-y|0
|x-9|0
x9;-9
y9;-9

 

 

b)    |x2-3x|+|(x+1).(x-3)|=0

   

    xét    x2-3x|=0

           => x2-3x=0

                x(x-3)=0

              =>x=0 hoặc x-3=0

                                => x=3

            |(x+1)(x-3)|=0

     => (x+1)(x-3)=0

th1  x=0

   (0+1).(0-3)=0

   -1.(-3)=0(loại)

th2 x=3

     (3+1)(3-3)=0

     4.0=0 (lấy)

     => x=0

22 tháng 2 2020

a) (x-1)x+2=(x-1)2.(x-1)x+2

=> (x-1)2=1

=> x-1=1

=>x=2

22 tháng 2 2020

b) | 3x - 4 | + | 5y + 5 | = 0   

Ta có  \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|5y+5\right|\ge0\end{cases}\forall xy}\)

\(\Leftrightarrow\left|3x-4\right|+\left|5y+5\right|\ge0\forall xy\)  

Do đó để tổng | 3x - 4 | + | 5y + 5 | = 0    thì \(\hept{\begin{cases}\left|3x-4\right|=0\\\left|5y+5\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x-4=0\\5y+5=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=4\\5y=-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-1\end{cases}}\)

Vậy \(x=\frac{4}{3}\) và y= - 1 

c) | x + 3 | + | x + 1 | = 3x  (*1)

Ta có \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\forall x}\)

\(\Leftrightarrow\) | x + 3 | + | x + 1 | \(\ge0\forall\)x

\(\Leftrightarrow3x\ge0\forall x\)

\(\Leftrightarrow x\ge0\)

\(\Leftrightarrow x+3>x+1>x\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=x+3\\\left|x+1\right|=x+1\end{cases}}\)

\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=x+3+x+1\)

\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=2x+4\)  (*2)

Từ (*1) và (*2) <=> 2x + 4 = 3x

\(\Leftrightarrow4=3x-2x\)

\(\Leftrightarrow x=4\)

Vậy x = 4

Câu a t đang nghi sai đề

Lát t lm đc thì lm sau nhé