Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) ti lê canh huyen la: 52 + 122 = 132
ta có AB/5 =AC/12 = BC/13 =>AB=20;AC=48;BC=52
5) cac canh bang 20;48 ;52
la tg vuong vi 522 = 482+202.
( giai toan giup bạn )
Gọi hai cạnh góc vuông và cạnh huyền của tam giác vuông lần lượt là a(cm), b(cm) và c(cm)(Điều kiện: a>0; b>0; c>0)
Vì các cạnh góc vuông tỉ lệ với 5 và 12 nên a:b=5:12
\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{12}\)
Đặt \(\dfrac{a}{5}=\dfrac{b}{12}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=5k\\b=12k\end{matrix}\right.\)
Áp dụng định lí Pytago, ta được:
\(c^2=a^2+b^2\)
\(\Leftrightarrow c^2=\left(5k\right)^2+\left(12k\right)^2=169k^2\)
hay c=13k
Ta có: Chu vi của tam giác bằng 60cm
nên a+b+c=60
\(\Leftrightarrow5k+12k+13k=60\)
\(\Leftrightarrow30k=60\)
hay k=2
Ta có: a=5k(cmt)
nên a=10(cm)
Ta có: b=12k(cmt)
nên b=24(cm)
Ta có: c=13k(cmt)
nên c=26(cm)
Vậy: Độ dài các cạnh của tam giác vuông cần tìm lần lượt là 10cm; 24cm và 26cm
Gọi a,b,c lần lượt là 2 cạnh góc vuông và cạnh huyền của tam giác đó
Theo đề ta có: \(\dfrac{a}{5}=\dfrac{b}{12}\)
Đặt: \(\dfrac{a}{5}=\dfrac{b}{12}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=5k\\b=12k\end{matrix}\right.\)
Tam giác đó vuông. Áp dụng Pitago
=> a2 + b2 = c2
\(\Rightarrow25k^2+144k^2=c^2\)
\(\Rightarrow c^2=169k^2\)
=> c = 13k
Chu vi của tam giác đó = 30
=> a + b + c = 30
=> 5k + 12k + 13k = 30
=> 30k = 30
=> k = 1
c = 13k = 13.1 = 13 (cm)
Vậy độ dài cạnh huyền là 13cm
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó
5k +12k + 13k = 30 => k = 1.
Từ đó độ dài cạnh huyền là 13 cm.