K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 4 2019

Lời giải:

Ta có:

\(\frac{1}{2^2}=\frac{1}{2.2}>\frac{1}{2.3}\)

\(\frac{1}{3^2}=\frac{1}{3.3}>\frac{1}{3.4}\)

.........

\(\frac{1}{2012^2}=\frac{1}{2012.2012}>\frac{1}{2012.2013}\)

Cộng theo vế ta có:

\(B>\underbrace{\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{2012.2013}}_{M}(1)\)

\(M=\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2013-2012}{2012.2013}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2012}-\frac{1}{2013}\)

\(=\frac{1}{2}-\frac{1}{2013}(2)\)

Từ \((1);(2)\Rightarrow B>\frac{1}{2}-\frac{1}{2013}(*)\)

---------------------------

\(B=\frac{1}{2^2}+\frac{3^2}+\frac{1}{4^2}+....+\frac{1}{2012^2}<\underbrace{ \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}}_{N}(3)\)

Mà:

\(N=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{2012-2011}{2011.2012}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2011}-\frac{1}{2012}\)

\(=1-\frac{1}{2012}<1(4)\)

Từ \((3);(4)\Rightarrow B< N< 1(**)\)

Từ \((*); (**)\) ta có đpcm.

19 tháng 3 2018

óc chó      c hó

19 tháng 3 2018

B=2013.(1+

\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{2013}{1+2+3+...+2012}\)

B=2013(\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2012.2013}\)

B=2013.2(\(1\frac{1}{2013}=2013.2.\frac{2012}{2013}=4024\)

4 tháng 5 2016

=> B=2013. (1+\(\frac{1}{1+2}\) +\(\frac{1}{1+2+3}\) +...+ \(\frac{1}{1+2+3+...+2012}\))

=>B= 2013.(\(\frac{2}{2}\) + \(\frac{2}{2.3}\) +\(\frac{2}{3.4}\) +...+\(\frac{2}{2012.2013}\))

=>B= 2013.2.(\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) +\(\frac{1}{3.4}\) +...+\(\frac{1}{2012.2013}\))

=>B=4026. (1-\(\frac{1}{2}\) +\(\frac{1}{2}\) -\(\frac{1}{3}\) + ...+\(\frac{1}{2012}\) - \(\frac{1}{2013}\))

=>B=4026.(1-\(\frac{1}{2013}\)

=>B=4026.\(\frac{2012}{2013}\) => B=2.2012=4024 Vậy B=4024

8 tháng 1 2017

a)

\(2^x\left(1+2+2^2+2^3\right)=480\)

\(2^x.15=480\Rightarrow2^x=\frac{480}{15}=32=2^5\Rightarrow x=5\)

15 tháng 1 2017

Chính Xác 100% là X=5 

k cho mink nhé các pạn

8 tháng 5 2017

Ta có : 1 + 2 + 3 + ... + n = \(\frac{\left(n+1\right)n}{2}\)

Vậy nên : \(A=2013+\frac{2013}{\frac{3.2}{2}}+\frac{2013}{\frac{4.3}{2}}+...+\frac{2013}{\frac{2013.2012}{2}}\)

\(A=2013+\frac{4026}{2.3}+\frac{4016}{3.4}+...+\frac{4026}{2012.2013}\)

\(A=4026\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\right)\)

\(A=4026\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)

\(A=4026\left(1-\frac{1}{2013}\right)=4026.\frac{2012}{2013}=4024.\)

10 tháng 3 2017

ta có biêu thức trên\(\: < \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}\)=\(\frac{2012}{2013}< 1\)

do dó biểu thức <1

10 tháng 3 2017

Chứng minh biểu thức trên làm sao?