Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong dãy số liệu thống kê trên có 20 giá trị ( không phân biệt) nên có tất cả 20 vận động viên tham gia chạy.
Vậy kích thước mẫu là 20
Chọn B.
Phép đo của các nhà thiên văn có sai số tuyệt đối không vượt quá \(\frac{1}{4}\) ngày, có nghĩa là không vượt quá 360 phút. Phép đo của Hùng có sai số tuyệt đối không vượt quá 1 phút. Nếu chỉ so sánh 360 phút và 1 phút thì có thể dẫn đến hiểu rằng phép đo của bạn Hùng chính xác hơn phép đo của các nhà thiên văn. Tuy nhiên, \(\frac{1}{4}\) ngày hay 360 phút là độ chính xác của phép đo một chuyển động trong 365 ngày, còn 1 phút là độ chính xác của phép đo một chuyển động trong 15 phút. So sánh hai tỉ số \(\frac{{\frac{1}{4}}}{{365}} = \frac{1}{{1460}} = 0,0006849...\) và\(\frac{1}{{15}} = 0,0666...\) , ta thấy rằng phép đo của các nhà thiên văn chính xác hơn nhiều.
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105
b, -12/6 = -6/8 = 9/-12 = 21/-28
c, 15 phút = 0,25 giờ
45 phút = 0,75 giờ
78 phút = 1,3 giờ
150 phút = 2,5 giờ
b) \(\frac{-12}{16}\)=\(\frac{-3}{4}\)=\(\frac{-3\cdot2}{4\cdot2}\)=\(\frac{-6}{8}\)=\(\frac{-3\cdot3}{4\cdot3}\)=\(\frac{-9}{12}\)=\(\frac{9}{-12}\)=\(\frac{-3\cdot7}{4\cdot7}\)=\(\frac{-21}{28}\)=\(\frac{21}{-28}\)
c)15 phút=15/60 giờ=1/4 giờ=0,25 giờ
45 phút =45/60 giờ=3/4 giờ=0,75 giờ
78 phút =78/60 giờ=13/10 giờ=1,3 giờ
150 phút=150/60 giờ= 5/2 giờ=2,5 giờ