K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

 b,         -12/6 = -6/8 = 9/-12 = 21/-28

c,        15 phút = 0,25 giờ

            45 phút = 0,75 giờ

             78 phút = 1,3 giờ

             150 phút = 2,5 giờ

 

b) \(\frac{-12}{16}\)=\(\frac{-3}{4}\)=\(\frac{-3\cdot2}{4\cdot2}\)=\(\frac{-6}{8}\)=\(\frac{-3\cdot3}{4\cdot3}\)=\(\frac{-9}{12}\)=\(\frac{9}{-12}\)=\(\frac{-3\cdot7}{4\cdot7}\)=\(\frac{-21}{28}\)=\(\frac{21}{-28}\)

c)15 phút=15/60 giờ=1/4 giờ=0,25 giờ

    45 phút =45/60 giờ=3/4 giờ=0,75 giờ

     78 phút =78/60 giờ=13/10 giờ=1,3 giờ

      150 phút=150/60 giờ= 5/2 giờ=2,5 giờ

12 tháng 7 2019

Trong dãy số liệu thống kê trên có 20 giá trị ( không phân biệt)  nên có tất cả 20 vận động viên tham gia chạy.

Vậy kích thước mẫu là 20

Chọn B.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Phép đo của các nhà thiên văn có sai số tuyệt đối không vượt quá \(\frac{1}{4}\)  ngày, có nghĩa là không vượt quá 360 phút. Phép đo của Hùng có sai số tuyệt đối không vượt quá 1 phút. Nếu chỉ so sánh 360 phút và 1 phút thì có thể dẫn đến hiểu rằng phép đo của bạn Hùng chính xác hơn phép đo của các nhà thiên văn. Tuy nhiên,  \(\frac{1}{4}\) ngày hay 360 phút là độ chính xác của phép đo một chuyển động trong 365 ngày, còn 1 phút là độ chính xác của  phép đo một chuyển động trong 15 phút. So sánh hai tỉ số \(\frac{{\frac{1}{4}}}{{365}} = \frac{1}{{1460}} = 0,0006849...\) và\(\frac{1}{{15}} = 0,0666...\) , ta thấy rằng phép đo của các nhà thiên văn chính xác hơn nhiều.

4 tháng 6 2018

Đáp án: 76%

17 tháng 5 2017

Bảng phân bố tần số và tần suất

Bảng phân bố tần số và tần suất

12 tháng 10 2017

Đáp án: 54,28%

Câu 1: 

Gọi độ dài quãng đường AB là x(km)

Thời gian đi là x/45(h)

Thời gian về là x/42(h)

Theo đề, ta có: x/45+x/42=15

hay x=9450/29

Bài 2: 

Gọi ba số là a,b,c

Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)

Do đó: a=75; b=50; c=105

Câu 1: 

Gọi độ dài quãng đường AB là x(km)

Thời gian đi là x/45(h)

Thời gian về là x/42(h)

Theo đề, ta có: x/45+x/42=15

hay x=9450/29

Bài 2: 

Gọi ba số là a,b,c

Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)

Do đó: a=75; b=50; c=105

Câu 1: 

Gọi độ dài quãng đường AB là x(km)

Thời gian đi là x/45(h)

Thời gian về là x/42(h)

Theo đề, ta có: x/45+x/42=15

hay x=9450/29

Bài 2: 

Gọi ba số là a,b,c

Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)

Do đó: a=75; b=50; c=105