Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để $B$ không rút gọn được thì $n+1, n-3$ là 2 số nguyên tố cùng nhau.
$\Rightarrow ƯCLN(n+1, n-3)=1$
Gọi $d=ƯCLN(n+1, n-3)$
$\Rightarrow n+1\vdots d; n-3\vdots d$
$\Rightarrow (n+1)-(n-3)\vdots d\Rightarrow 4\vdots d$
Để 2 số nt cùng nhau thì $(4,d)=1$
$\Rightarrow n+1\not\vdots 2$
$\Rightarrow n+1$ lẻ
$\Rightarrow n$ chẵn.
\(1,\)Rút gọn : \(\frac{-24}{56};\frac{1212}{-4545}\)
\(\frac{-24}{56}=\frac{-24:8}{56:8}=\frac{-3}{7}\)
\(\frac{1212}{-4545}=\frac{1212:(-101)}{(-4545):(-101)}=\frac{-12}{45}=\frac{-4}{15}\)
Tự so sánh
\(a)\) Ta có :
\(A=\frac{3n+6}{n+1}=\frac{3n+3+3}{n+1}=\frac{3n+3}{n+1}+\frac{3}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{3}{n+1}=3+\frac{3}{n+1}\)
Để A nguyên thì \(\frac{3}{n+1}\) phải nguyên \(\Rightarrow\)\(3⋮\left(n+1\right)\)\(\Rightarrow\)\(\left(n+1\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n+1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(0\) | \(-2\) | \(2\) | \(-4\) |
Vậy \(n\in\left\{-4;-2;0;2\right\}\)
\(b)\)
* Tính GTLN :
Ta có :
\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\)( câu a mình có làm rồi )
Để đạt GTLN thì \(\frac{3}{n+1}\) phải đạt GTLN hay \(n+1>0\) và đạt GTNN
\(\Rightarrow\)\(n+1=1\)
\(\Rightarrow\)\(n=0\)
Suy ra :
\(A=3+\frac{3}{n+1}=3+\frac{3}{0+1}=3+\frac{3}{1}=3+3=6\)
Vậy \(A_{max}=6\) khi \(n=0\)
* Tính GTNN :
Ta có :
\(A=\frac{3n+6}{n+1}=3+\frac{3}{n+1}\) ( theo câu a )
Để A đạt GTNN thì \(\frac{3}{n+1}\) phải đạt GTNN hay \(n+1< 0\) và đạt GTLN
\(\Rightarrow\)\(n+1=-1\)
\(\Rightarrow\)\(n=-2\)
Suy ra :
\(A=3+\frac{3}{n+1}=3+\frac{3}{-2+1}=3+\frac{3}{-1}=3-3=0\)
Vậy \(A_{min}=0\) khi \(n=-2\)
Chúc bạn học tốt ~
Tớ nghĩ là cộng vì dấu ''+'' nằm dưới dấu ''='' mà, chắc là quên ấn nút ''Shift'' ấy mà!
vì B rút gọn đc nên 1-n thuộc Ư(2)={1;2;-1;-2}
=>n thuộc{0;-1;2;3}