Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15
= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15
( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3
A= 2x^2+9y^2-6xy-6x-12y+2004
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004
A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975
A= (x -3y +2)^2 + (x -5)^2 + 1975
( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3
D=-x^2+2xy-4y^2+2x+10y-8
D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
D= - (x - y - 1)^2 - 3(y - 2)^2 +5
=> Max D = 5 khi x= 3 và y=2
Bài 1:
a) x2 + y2 - 2x + 10y + 26 = 0
<=> (x2 - 2x + 1) + (y2 + 10y + 25) = 0
<=> (x - 1)2 + (y + 5)2 = 0 (*)
Vì (x - 1)2 \(\ge\)0; (y + 5)2 \(\ge\)0
(*) <=> x - 1 = 0 hay y + 5 = 0
<=> x = 1 I <=> y = -5
b) 64x3 + 48x2 + 12x + 1 = 27
<=> 64x3 - 32x2 + 80x2 - 40x + 52x + 1 - 27 = 0
<=> 64x3 - 32x2 + 80x2 - 40x + 52x - 26 = 0
<=> 64x2(x - \(\frac{1}{2}\)) + 80x(x - \(\frac{1}{2}\)) + 52(x - \(\frac{1}{2}\)) = 0
<=> (x - \(\frac{1}{2}\))(64x2 + 80x + 52) = 0
<=> (x - \(\frac{1}{2}\))[(8x)2 + 2.8x.5 + 52 + 27) = 0
<=> (x - \(\frac{1}{2}\))[(8x + 5)2 + 27) = 0
<=> x - \(\frac{1}{2}\)= 0 (vì (8x + 5)2 + 27 > 0
<=> x = \(\frac{1}{2}\)
Bài 2:
a) x2 + 2xy + y2
= (x + y)2
= 32 = 9
b) x2 - 2xy + y2
= x2 + 2xy + y2 - 4xy
= (x + y)2 - 4xy
= 32 - 4.(-10)
= 9 + 40 = 49
c) x2 + y2
= x2 + 2xy + y2 - 2xy
= (x + y)2 - 2xy
= 32 - 2.(-10)
= 9 + 20 = 29
a) (x-y)2-(x2-2xy)
=y2-2xy+x2-x2+2xy
=y2-(-2xy+2xy)+(x2-x2)
=y2
b)(x-y)2+x2+2xy-(x+y)2
=y2-2xy+x2+x2+2xy-y2-2xy-x2
=(y2-y2)-(2xy+2xy-2xy)+(x2+x2-x2)
=x2-2xy
x(x-1)=1-x2
x2-x=1-x2
2x2-x-1=0
\(\hept{\begin{cases}x=1\\x=\frac{-1}{2}\end{cases}}\)
\(x^2-5\)
\(=x^2-\left(\sqrt{5}\right)^2\)
\(=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
Em kiểm tra lại đề bài nhé \(\frac{2}{x-y}\)hay \(\frac{2}{x-2}\)
Bài 2:
a) x + 2a.(x-y) - y
= 2a.(x-y) + (x-y)
= (x-y).(2a+1)
b) 5a2 - 5ax - 7a + 7x
= 5a.(a-x) - 7.(a-x)
= (a-x).(5a-7)
Bài 1:
a) 5x.(10x+7) - 25x.(2x-3) = 40
50x2 + 35x - 50x2 + 75x = 40
110x = 40
x = 4/11
b) (3x+2).(x-2) - (x-1).(x-3) = 4
3x2 - 6x + 2x - 4 - x2 + 3x + x - 3 = 4
2x2 - 7 = 4
...
bn tự làm tiếp nha
\(A=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-10y+25\right)+\frac{19}{4}\)
\(=\left(x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right)+\left(y^2-2\cdot5y+5^2\right)+\frac{19}{4}=\left(x+\frac{1}{2}\right)^2+\left(y-5\right)^2+\frac{19}{4}>=\frac{19}{4}\)
dấu = xảy ra khi \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
\(\left(y-5\right)^2=0\Rightarrow y-5=0\Rightarrow y=5\)
vậy min A là \(\frac{19}{4}\)khi \(x=-\frac{1}{2};y=5\)
( đề là tìm gtnn à ??? )
\(A=x^2+x+y^2-10y+30\)
\(A=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-10y+25\right)+\frac{19}{4}\)
\(A=\left(x+\frac{1}{2}\right)^2+\left(y-5\right)^2+\frac{19}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\)
\(\left(y-5\right)^2\ge0\)
\(\Rightarrow A\ge\frac{19}{4}\)
Dấu " = " xảy ra khi :
\(\hept{\begin{cases}x+\frac{1}{2}=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=5\end{cases}}\)
Vậy \(A_{Min}=\frac{19}{4}\Leftrightarrow\left(x;y\right)=\left(-\frac{1}{2};5\right)\)