Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: \(\left(2x-5\right)\left(x+2\right)-2x\left(x-1\right)=15\)
\(\Leftrightarrow2x^2+4x-5x-10-2x^2+2x=15\)
\(\Leftrightarrow x=25\)
b: Ta có: \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)
\(\Leftrightarrow4x^2-25+\left(2x-5\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+5+2x+7\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-3\end{matrix}\right.\)
c: Ta có: \(x\left(4x-5\right)-\left(2x+1\right)^2=0\)
\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)
\(\Leftrightarrow-9x=1\)
hay \(x=-\dfrac{1}{9}\)
a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\left(1\right)=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-15=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
Đặt \(t=x^2+5x+4\)
(1) trở thành: \(t\left(t+2\right)-15=t^2+2t+1-16=\left(t+1\right)^2-4^2=\left(t-3\right)\left(t+5\right)\)
Thay t: \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-15=\left(x^2+5x+4-3\right)\left(x^2+5x+4+5\right)=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
b) \(\left(2x+5\right)^2-\left(x-9\right)^2=\left(2x+5-x+9\right)\left(2x+5+x-9\right)=\left(x+14\right)\left(3x-4\right)\)
a: Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+3\right)\left(x+4\right)-15\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-15\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-15\)
\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+9\)
\(=\left(x^2+5x+1\right)\left(x^2+5x+9\right)\)
b: \(\left(2x+5\right)^2-\left(x-9\right)^2\)
\(=\left(2x+5-x+9\right)\left(2x+5+x-9\right)\)
\(=\left(x+15\right)\left(3x-4\right)\)
\(a,=>x^3-2x^2+4x+2x^2-4x+8-x^3+2x-15=0\)
\(< =>2x-7=0< =>x=\dfrac{7}{2}\)
b,\(=>x\left(x^2-25\right)-\left(x+2\right)\left(x^2-2x+4\right)-3=0\)
\(< =>x^3-25x-x^3+2x^2-4x-2x^2+4x-8-3=0\)
\(< =>-25x-11=0\)
\(< =>x=-0,44\)
\(A=\left(x+2\right)^2-\left(x+3\right)\left(x-1\right)+15\)
\(A=x^2+4x+4-\left(x^2-x+3x-3\right)+15\)
\(A=\left(x^2-x^2\right)+\left(4x+x-3x\right)+\left(15+3+4\right)\)
\(A=2x+22\)
______________________
\(B=\left(x+1\right)\left(x-1\right)-\left(x+4\right)^2-6\)
\(B=\left(x^2-1\right)-\left(x^2+8x+16\right)-6\)
\(B=\left(x^2-x^2\right)-8x-\left(1+16+6\right)\)
\(B=-8x-23\)
_________________
\(C=\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2\)
\(C=\left[\left(3x\right)^2-2^2\right]-\left(9x^2-6x+1\right)\)
\(C=\left(9x^2-9x^2\right)+6x-\left(4+1\right)\)
\(C=6x-5\)
a) Rút gọn biểu thức A = (x + 2)2 - (x + 3)(x - 1) + 15:
Bắt đầu bằng việc mở ngoặc:
A = (x^2 + 4x + 4) - (x^2 + 2x - 3x - 3) + 15
Tiếp theo, kết hợp các thành phần tương tự:
A = x^2 + 4x + 4 - x^2 - 2x + 3x + 3 + 15
Tiếp tục đơn giản hóa:
A = x^2 - x^2 + 4x - 2x + 3x + 4 + 3 + 15
Kết quả cuối cùng:
A = 5x + 19
b) Rút gọn biểu thức B = (x - 1)(x + 1) - (x + 4)2 - 6:
Bắt đầu bằng việc mở ngoặc:
B = (x^2 - 1) - (x^2 + 4x + 4) - 6
Tiếp theo, kết hợp các thành phần tương tự:
B = x^2 - 1 - x^2 - 4x - 4 - 6
Tiếp tục đơn giản hóa:
B = x^2 - x^2 - 4x - 4 - 6 - 1
Kết quả cuối cùng:
B = -4x - 11
c) Rút gọn biểu thức C = (3x - 2)(3x + 2) - (3x - 1)2:
Bắt đầu bằng việc mở ngoặc:
C = (9x^2 - 4) - (9x^2 - 6x + 1)
Tiếp theo, kết hợp các thành phần tương tự:
C = 9x^2 - 4 - 9x^2 + 6x - 1
Tiếp tục đơn giản hóa:
C = 9x^2 - 9x^2 + 6x - 4 - 1
Kết quả cuối cùng:
C = 6x - 5
\(a,=x^2-4-x^2-2x-1=-2x-5\\ b,=8x^3-1-8x^3-1=-2\\ 3,\\ a,\Rightarrow x^3+8-x^3+2x=15\\ \Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\\ b,\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\\ \Rightarrow7x=14\Rightarrow x=2\)
Bài 2:
a) \(=x^2-4-x^2-2x-1=-2x-5\)
b) \(=8x^3-1-8x^3-1=-2\)
Bài 3:
a) \(\Rightarrow x^3+8-x^3+2x=15\)
\(\Rightarrow2x=7\Rightarrow x=\dfrac{7}{2}\)
b) \(\Rightarrow x^3-3x^2+3x-1-x^3+3x^2+4x=13\)
\(\Rightarrow7x=14\Rightarrow x=2\)
a)x.(5-2x)-2x.(1-x)=15
x [ 5 - 2x -2.(1-x) ] = 15
x ( 5 - 2x -2 + 2x ) =15
x . 3 =15
x = 5
b)(3x+2)2+(1+3x).(1-3x)=2
9x2+12x+4+1-9x2=2
12x + 5 = 2
12x = -3
x = -1/4
a) \(x\left(5-2x\right)-2x\left(1-x\right)=15\\ \Leftrightarrow5x-2x^2-2x+2x^2=15\\ \Leftrightarrow3x=15\\ \Leftrightarrow x=5\)
Vậy x = 5 là nghiệm của pt.
b) \(\left(3x+2\right)^2+\left(1+3x\right)\left(1-3x\right)=2\\ \Leftrightarrow\left(9x^2+12x+4\right)+1-9x^2=2\\ \Leftrightarrow12x+5=2\\ \Leftrightarrow12x=-3\\ \Leftrightarrow x=\dfrac{-1}{4}\)
Vậy \(x=-\dfrac{1}{4}\) là nghiệm của pt.
Lời giải:
a.
$A=20x^3-10x^2+5x-(20x^3-10x^2-4x)$
$=9x=9.15=135$
b.
$B=(5x^2-20xy)-(4y^2-20xy)=5x^2-4y^2$
$=5(\frac{-1}{5})^2-4(\frac{-1}{2})^2=\frac{-4}{5}$
c.
$C=(6x^2y^2-6xy^3)-(8x^3-8x^2y^2)-(5x^2y^2-5xy^3)$
$=-8x^3+9x^2y^2-xy^3$
$=(-2x)^3+(3xy)^2-xy^3$
$=(-2.\frac{1}{2})^3+(3.\frac{1}{2}.2)^2-\frac{1}{2}.2^3$
$=(-1)^3+3^2-4=4$
a) \(\left(2x-5\right)^2-\left(2x+3\right)\left(2x-3\right)=10\Leftrightarrow\left(4x^2-20x+25\right)-\left(4x^2-9\right)-10=0\)
\(\Leftrightarrow-20x+24=0\Leftrightarrow x=\frac{6}{5}\)
b) \(\left(4x-1\right)\left(x+2\right)-\left(2x+3\right)^2-5\left(x-1\right)=9\Leftrightarrow-10x-15=0\)
\(\Leftrightarrow x=\frac{-3}{2}\)
c) \(\left(x+1\right)^3-\left(x-1\right)^3-2=6\Leftrightarrow\left(x^3+3x^2+3x+1\right)-\left(x^3-3x^2+3x-1\right)-8=0\)
\(\Leftrightarrow6x^2-6=0\Leftrightarrow x=\pm1\)
d) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(x+1\right)\left(x^2-x+1\right)-3\left(-x-2\right)=5\)
\(\Leftrightarrow\left(x^3+8\right)-\left(x^3+1\right)+3x+6=5\Leftrightarrow3x+8=0\Leftrightarrow x=\frac{-8}{3}\)
a, \(\left(x-5\right)\left(x+2\right)+\left(x+1\right)\left(2-x\right)=15\)
\(\Leftrightarrow x^2+2x-5x-10+2x-x^2+2-x=15\Leftrightarrow-2x-23=0\)
\(\Leftrightarrow x=-\frac{23}{2}\)
b, \(\left(2x-3\right)\left(x+5\right)-\left(x-2\right)\left(2x+1\right)=3\)
\(\Leftrightarrow2x^2+10x-3x-15-\left(2x^2+x-4x-2\right)=3\)
\(\Leftrightarrow10x-16=0\Leftrightarrow x=\frac{8}{5}\)
(x -5)(x + 2) + (x + 1)(2 - x) = 15
=> x2 - 3x - 10 + x - x2 + 2 = 15
=> -2x = 23
=> x = - 11,5
b)(2x - 3)(x + 5) - (x - 2)(2x + 1) = 3
=> 2x2 + 7x - 15 - 2x2 + 3x + 2 = 3
=> 10x = 16
=> x = 1,6
Vậy x = 1,6