K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

a)  |x -3| - |2x-4| = 0 

TC: |x-3| \(\ge\) 0 với mọi x

      |2x-4|\(\ge\) với mọi x

=> |x=3|-|2x-4|=0 

 Khi \(\hept{\begin{cases}\left|x-3\right|=0\\\left|2x-4\right|=0\end{cases}\Rightarrow}\)\(\hept{\begin{cases}x-3=0\\2x-4=0\end{cases}\Rightarrow}\)\(\hept{\begin{cases}x=0+3\\2x=0+4\end{cases}\Rightarrow}\)\(\hept{\begin{cases}x=3\\2x=4\end{cases}}\Rightarrow\)\(\hept{\begin{cases}x=3\\x=2\end{cases}}\)

              Vậy ko có giá trị nào thoả mãn     

b) |3x-2|=x-1

Điều kiện:  \(3x-2\ge0\)      

                 \(3x\ge2\)  

                  \(x\ge\frac{2}{3}\)             

\(\Rightarrow\orbr{\begin{cases}3x-2=x-1\\3x-2=-\left(x-1\right)=-x+1\end{cases}}\)   \(\Rightarrow\orbr{\begin{cases}3x-x=-1+2\\3x+x=1+2\end{cases}\Rightarrow\orbr{\begin{cases}2x=1\\4x=3\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{4}\end{cases}}}\)        

\(\)      Vậy x=\(\frac{1}{2}\)  hoặc x= \(\frac{3}{4}\)                           

c)|4-3x|=2x+1

ĐK: \(2x+1\ge0\)         

       \(2x\ge-1\)

        \(x\ge\frac{-1}{2}\)

\(\Rightarrow\orbr{\begin{cases}4-3x=2x+1\\4-3x=-\left(2x+1\right)=2x-1\end{cases}\Rightarrow\orbr{\begin{cases}4-1=2x+3x\\4+1=2x+3x\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}3=5x\\5=5x\end{cases}}\Rightarrow\orbr{\begin{cases}5x=3\\5x=5\end{cases}}\Rightarrow\orbr{\orbr{\begin{cases}x=\frac{3}{5}\\x=1\end{cases}}}\)

Vậy x=3/5 hoạc x=1

bạn nè chữ mỗi bạn viết kí hiệu nhé. tmt, mình ko viết được nhé

24 tháng 2 2023

\(P\left(x\right)=2x^4+3x^2-x^3-3x^4-x^2-2x+1\)

\(=-x^4-x^3+2x^2-2x+1\)

24 tháng 2 2023

C

a: \(\left(x+\dfrac{1}{4}\right)+\left(3x-4\right)+2\left(x-3\right)=1\)

=>\(x+\dfrac{1}{4}+3x-4+2x-6=1\)

=>\(6x-\dfrac{39}{4}=1\)

=>\(6x=1+\dfrac{39}{4}=\dfrac{43}{4}\)

=>\(x=\dfrac{43}{4}:6=\dfrac{43}{24}\)

b: \(2\left(x-3\right)=3\left(x+2\right)-x+1\)

=>\(2x-6=3x+6-x+1\)

=>2x-6=2x+7

=>-6=7(vô lý)

c: \(x\left(x+3\right)+x\left(x-2\right)=2x\left(x-1\right)\)

=>\(x^2+3x+x^2-2x=2x^2-2x\)

=>3x-2x=-2x

=>3x=0

=>x=0

d: \(\left(x-1\right)\cdot3x-2\left(x+2\right)-2x=x\left(x-1\right)\)

=>\(3x^2-3x-2x-4-2x=x^2-x\)

=>\(3x^2-7x-4-x^2+x=0\)

=>\(2x^2-6x-4=0\)

=>\(x^2-3x-2=0\)

=>\(x=\dfrac{3\pm\sqrt{17}}{2}\)

14 tháng 11 2023

a: \(\left|7-2x\right|+7=2x\)

=>\(\left|2x-7\right|+7=2x\)

=>\(\left|2x-7\right|=2x-7\)

=>2x-7>=0

=>\(x>=\dfrac{7}{2}\)

b: \(\left|1-x\right|=4x+1\)

=>\(\left|x-1\right|=4x+1\)

=>\(\left\{{}\begin{matrix}4x+1>=0\\\left(4x+1\right)^2=\left(x-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(4x+1\right)^2-\left(x-1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left(4x+1-x+1\right)\left(4x+1+x-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\5x\left(3x+2\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=-\dfrac{1}{4}\\\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-\dfrac{2}{3}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

c: \(\left|x-\dfrac{1}{3}\right|+\dfrac{4}{5}=\left|3,2+\dfrac{2}{5}\right|\)

=>\(\left|x-\dfrac{1}{3}\right|=\dfrac{16}{5}+\dfrac{2}{5}-\dfrac{4}{5}=\dfrac{14}{5}\)

=>\(\left[{}\begin{matrix}x-\dfrac{1}{3}=\dfrac{14}{5}\\x-\dfrac{1}{3}=-\dfrac{14}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{14}{5}+\dfrac{1}{3}=\dfrac{42+5}{15}=\dfrac{47}{15}\\x=-\dfrac{14}{5}+\dfrac{1}{3}=\dfrac{-42+5}{15}=-\dfrac{37}{15}\end{matrix}\right.\)

d: \(\left|x-7\right|+2x+5=6\)

=>\(\left|x-7\right|=6-2x-5=-2x+1\)

=>\(\left\{{}\begin{matrix}-2x+1>=0\\\left(-2x+1\right)^2=\left(x-7\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(2x-1\right)^2-\left(x-7\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(2x-1+x-7\right)\left(2x-1-x+7\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left(3x-8\right)\left(x+6\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{1}{2}\\\left[{}\begin{matrix}x=\dfrac{8}{3}\left(loại\right)\\x=-6\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)

e: 3x-|2x-1|=2

=>|2x-1|=3x-2

=>\(\left\{{}\begin{matrix}3x-2>=0\\\left(3x-2\right)^2=\left(2x-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2\right)^2-\left(2x-1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(3x-2-2x+1\right)\left(3x-2+2x-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left(x-1\right)\left(5x-3\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left[{}\begin{matrix}x-1=0\\5x-3=0\end{matrix}\right.\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{3}\\\left[{}\begin{matrix}x=1\left(nhận\right)\\x=\dfrac{3}{5}\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)

5 tháng 9 2021

a, \(\left|2x-3\right|-\dfrac{1}{3}=0\Leftrightarrow\left|2x-3\right|=\dfrac{1}{3}\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=\dfrac{1}{3}\\2x-3=-\dfrac{1}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)

b, tương tự 

c, \(\left|2x-1\right|-\left|x+\dfrac{1}{3}\right|=0\Leftrightarrow\left|2x-1\right|=\left|x+\dfrac{1}{3}\right|\)

TH1 : \(2x-1=x+\dfrac{1}{3}\Leftrightarrow x=\dfrac{4}{3}\)

TH2 : \(2x-1=-x-\dfrac{1}{3}\Leftrightarrow3x=\dfrac{2}{3}\Leftrightarrow x=\dfrac{2}{9}\)

d, \(3x-\left|x+15\right|=\dfrac{5}{4}\Leftrightarrow\left|x+15\right|=3x-\dfrac{5}{4}\)ĐK : x >= 5/12

TH1 : \(x+15=3x-\dfrac{5}{4}\Leftrightarrow-2x=-\dfrac{65}{4}\Leftrightarrow x=\dfrac{65}{8}\)( tm )

TH2 : \(x+15=\dfrac{5}{3}-3x\Leftrightarrow4x=-\dfrac{40}{3}\Leftrightarrow x=-\dfrac{10}{3}\)

5 tháng 9 2021

TH2 x = -10/3 ( ktm ) nhé

27 tháng 6 2019

Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu

27 tháng 6 2019

a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14) 

=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84

=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84) 

=> 156 -  56x = 24x - 324 

=>  24x + 56x = 324 + 156 

=> 80x = 480 

=> x = 480 : 80 =  6 

Vậy x = 6 

22 tháng 9 2018

* Trả lời:

\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)

\(\Leftrightarrow-3+6x-4-12x=-5x+5\)

\(\Leftrightarrow6x-12x+5x=3+4+5\)

\(\Leftrightarrow x=12\)

\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)

\(\Leftrightarrow6x-15-6+24x=-3x+7\)

\(\Leftrightarrow6x+24x+3x=15+6+7\)

\(\Leftrightarrow33x=28\)

\(\Leftrightarrow x=\dfrac{28}{33}\)

\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)

\(\Leftrightarrow1-3x-6x+12=-4x-5\)

\(\Leftrightarrow-3x-6x+4x=-1-12-5\)

\(\Leftrightarrow-5x=-18\)

\(\Leftrightarrow x=\dfrac{18}{5}\)

\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)

\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)

\(\Leftrightarrow-x-5x=-7\)

\(\Leftrightarrow-6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\)

\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)

\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)

\(\Leftrightarrow-15x+3x=4\)

\(\Leftrightarrow-12x=4\)

\(\Leftrightarrow x=-\dfrac{1}{3}\)

a: 2x-1=0

nên 2x=1

hay x=1/2

b: 4x2-16=0

=>(x-2)(x+2)=0

=>x=2 hoặc x=-2

c: x2-2x=0

=>x(x-2)=0

=>x=0 hoặc x=2

13 tháng 4 2022

a: 2x-1=0

nên 2x=1

hay x=1/2

b: 4x2-16=0

=>(x-2)(x+2)=0

=>x=2 hoặc x=-2

c: x2-2x=0

=>x(x-2)=0

=>x=0 hoặc x=2

27 tháng 9

         Bài 1:

\(\dfrac{11}{2}x\) + 1 = \(\dfrac{1}{3}x-\dfrac{1}{4}\)

\(\dfrac{11}{2}\)\(x\) - \(\dfrac{1}{3}\)\(x\) = - \(\dfrac{1}{4}\) - 1

-(\(\dfrac{33}{6}\) + \(\dfrac{2}{6}\))\(x\) = - \(\dfrac{5}{4}\)

\(\dfrac{35}{6}\)\(x\) = - \(\dfrac{5}{4}\)

  \(x=-\dfrac{5}{4}\) : (- \(\dfrac{35}{6}\))

 \(x\) = \(\dfrac{3}{14}\)

Vậy \(x=\dfrac{3}{14}\)

 

 

27 tháng 9

Bài 2: 2\(x\) - \(\dfrac{2}{3}\) - 7\(x\) = \(\dfrac{3}{2}\) - 1

         2\(x\) - 7\(x\) = \(\dfrac{3}{2}\) - 1 + \(\dfrac{2}{3}\)

         - 5\(x\)    = \(\dfrac{9}{6}\) - \(\dfrac{6}{6}\) + \(\dfrac{4}{6}\) 

        - 5\(x\)    = \(\dfrac{7}{6}\)

           \(x\)    = \(\dfrac{7}{6}\) : (- 5) 

          \(x\)    = - \(\dfrac{7}{30}\)

Vậy \(x=-\dfrac{7}{30}\)

 

2 tháng 11 2019

+) Lỗi nhỏ: Sai ở chỗ: \(\left|x-2+4-3x\right|=\left|-2x-2\right|\)

+) Lỗi lớn: Dấu bằng xảy ra:  \(\hept{\begin{cases}\left(x-2\right)\left(4-3x\right)\ge0\\\left(-2x+2\right)\left(2x-3\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{3}{2}\le x\le1\end{cases}}\Leftrightarrow\frac{3}{2}\le x\le1\)( làm tắt )

Nhưng mà thử vào chọn x= 1=>  A = 3 > 1. Nên bài này sai. 

Làm lại nhé!

A = | x - 2 | + | 2 x - 3  | + | 3  x - 4 |

 = | x - 2 | + | 2 x - 3  | + 3 | x - 4/3 |

= | x -2 | + | x - 4/3 | + | 2x -3 | +2 | x - 4/3 |

= ( | 2 - x | + | x - 4/3 | ) + ( | 3 - 2x  | + | 2x - 8/3 | )

\(\ge\)| 2 -x + x - 4/3 | + | 3 - 2x + 2x -8/3 |

= 2/3 + 1/3 = 1

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2-x\right)\left(x-\frac{4}{3}\right)\ge0\\\left(3-2x\right)\left(2x-\frac{8}{3}\right)\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{4}{3}\le x\le2\\\frac{4}{3}\le x\le\frac{3}{2}\end{cases}}\Leftrightarrow\frac{4}{3}\le x\le\frac{3}{2}\)