Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4a.
Số tự nhiên là A, ta có:
A = 7m + 5
A = 13n + 4
=>
A + 9 = 7m + 14 = 7(m + 2)
A + 9 = 13n + 13 = 13(n+1)
vậy A + 9 là bội số chung của 7 và 13
=> A + 9 = k.7.13 = 91k
<=> A = 91k - 9 = 91(k-1) + 82
vậy A chia cho 91 dư 82
4b.
Giả sử p là 1 số nguyên tố >3, do p không chia hết cho 3 nên p có dạng 3k + 1 hoặc 3k + 2
Vì p +4 là số nguyên tố nên p không thể có dạng 3k + 2
Vậy p có dạng 3k +1.
=> p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
a) Ta có: 3=1.3=(-1).(-3)
TH1: x+1=1 => x=0 và xy-1=3 => 0y=4.( vô lí)=> loại
TH2: x+1=3 =>x=2 và xy-1=1 => xy=2 => 2y=2 => y=1
TH3: x+1= -1 => x=-2 và xy-1= -3 => xy= -2 => -2y=-2 => y=1
TH4: x+1= -3 => x=-4 và xy-1= -1 => xy=0 Suy ra -4y=0 Suy ra y=0.
Vậy (x,y) thuộc {(2;1); (-2;1) ; (-4;0)}
b) Vì lũy thừa cơ số 6 thì luôn luôn tận cùng là 6 vậy 6666= (...6). Tận cùng=6
n6 - n4 + 2n3 + 2n2
= n2 . (n4 - n2 + 2n +2)
= n2 . [n2(n - 1)(n + 1) + 2(n + 1)]
= n2 . [(n + 1)(n3 - n2 + 2)]
= n2 . (n + 1) . [(n3 + 1) - (n2 - 1)]
= n2. (n + 1)2 . (n2 - 2n + 2)
Với n ∈ N, n > 1 thì n2 - 2n + 2 = (n - 1)2 + 1 > (n - 1)2
Và n2 - 2n + 2 = n2 - 2(n - 1) < n2
Vậy (n - 1)2 < n2 - 2n + 2 < n2
=> n2 - 2n + 2 không phải là một số chính phương.