K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

a) \(\left|2x+3\right|=x+2\)

\(TH1:2x+3=x+2\)

\(\Rightarrow2x-x=2-3\)

\(x=-1\)

\(TH2:2x+3=-\left(x+2\right)\)

\(2x+3=-x-2\)

\(2x+x=-2-3\)

\(3x=-5\)

\(x=\frac{-5}{3}\)

KL: x= -1; x= -5/3

b) bn tham khảo câu này nha

gõ link : http://olm.vn/hoi-dap/question/650540.html

CHÚC BN HỌC TỐT!!!

16 tháng 3 2018

a, x=-1

b = giá trị nhỏ nhất của a là 1

7 tháng 9 2016

a)|x- 2006| -|2007- x|

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-2006\right|-\left|2007-x\right|\ge\left|x-2006-2007-x\right|=4013\)

Dấu = khi \(\left(x-2006\right)\left(2007-x\right)\ge0\)

\(\Rightarrow2006\le x\le2007\)

\(\Rightarrow\begin{cases}2006\le x\le2007\\\left(x-2006\right)\left(2007-x\right)=0\end{cases}\)\(\Rightarrow\begin{cases}x=2006\\x=2007\end{cases}\)

Vậy MinB=4013 khi x=2006 hoặc x=2007

b)Ta có:\(\begin{cases}y^2\\\left|x-16\right|\end{cases}\ge0\)

\(\Rightarrow y^2+\left|x-16\right|-9\ge0-9=-9\)

\(\Rightarrow C\ge-9\)

Dấu = khi \(\begin{cases}y^2=0\\\left|x-16\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=16\\y=0\end{cases}\)

Vậy MinC=-9 khi x=16 và y=0

21 tháng 6 2016

Áp dụng BĐT |a|+|b|>=|a+b| ta có:

\(\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|=1\)

\(\Rightarrow A\ge1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-2006\right|=0\\\left|2007-x\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2006\\x=2007\end{cases}}\)

Vậy MinA=1<=>x=2006 hoặc x=2007

5 tháng 2 2022

\(A=\left|x-2006\right|+\left|2007-x\right|\ge\left|x-2006+2007-x\right|=\left|1\right|=1\)

\(minA=1\Leftrightarrow\left(x-2006\right)\left(2007-x\right)\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2006\ge0\\2007-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2006\le0\\2007-x\le0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow2006\le x\le2007\)

30 tháng 1 2022

undefined

30 tháng 1 2022

\(A=\left|x-2006\right|+\left|2007-x\right|\)

Vì \(x>2007\) nên \(2x-4013>4014-4013=1\)

\(\Rightarrow A>1\)

Vậy \(A_{min}=1\Leftrightarrow2006\le x\le2007\)

22 tháng 11 2015

Ta có: |2007-x|=|x-2007|

 |x-2006|+|x-2007| > |x-2006-(x-2007)|

=> A > 1

=> GTNN cua A la 1

Đẳng thức xảy ra khi (x-2006)(x-2007) > 0

25 tháng 3 2017

+) Nếu x < 2006 thì: A = – x + 2006 + 2007 – x = – 2x + 4013

Khi đó: – x > -2006   => – 2x + 4013 > – 4012 + 4013 = 1   =>   A > 1

+) Nếu 2006  <=   x  <=  2007  thì: A = x – 2006 + 2007 – x = 1

+) Nếu x > 2007 thì   A =   x – 2006 – 2007 + x =   2x – 4013

Do x > 2007   => 2x – 4013 > 4014 – 4013 = 1 => A > 1.

Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 <=  x  <= 2007.

9 tháng 2 2018

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(A\ge\left|x-2016+2017-x\right|=1\)
Vậy minA=1

9 tháng 2 2018

Ta có \(A=\left|x-2006\right|+\left|2007-x\right|\)

\(=\left|2006-x\right|+\left|x-2007\right|\)

Ta có \(A=\left|2006-x\right|+\left|x-2007\right|\ge\left|2006-x+x-2007\right|=1\)

Dấu "=" xảy ra khi và chỉ \(2006\le x\le2007\)

Vậy GTNN A=1 khi \(2006\le x\le2007\)