Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ A_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
\(B=5x^2+2y^2+4xy-2x+4y+2020\)
\(=4x^2+4xy+y^2+x^2-2x+1+4y^2+4y+1+2018\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(2y+1\right)^2+2018\ge2018\left(\text{với mọi x;y}\right)\)
\(\text{Dấu "=" xảy ra khi: }x-1=0;2x+1=0\Leftrightarrow x=1;y=\frac{-1}{2}\)
\(\text{Vậy GTNN của }D\text{ là }2018\text{ tại }x=1;y=\frac{-1}{2}\)
=4.x^2+x^2+y^2+y^2+4xy-2x+4y+1+4+2015
=[4.x^2+4xy+y^2]+[x^2-2x+1]+[y^2-4y+4]
=[2x+y]^2+[x-1]^2+[y-2]^2+2015>hoặc bằng2015
giá trị nhỏ nhất là 2015
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu
Ta có
A=2x2+4y2-4x+4xy+2020
=(x^2+4y^2+4xy)+(x^2-4x+4)+2016
=(x+2y)^2+(x-2)^2+2016
Thấy
(x+2y)^2>=0 với mọi x,y
(x-2)^2>=0 với mọi x
=>(x+2y)^2+(x-2)^2+2016>=2016 với mọi x,y
Hay Min A>=2016
Dấu "=" xảy ra<=>(x+2y)^2=0 và(x-2)^2=0
<=>x=2;y=-1
Vậy Min A=2016 tại x=2 và y=-1
\(A=x^2-4xy+4y^2+x^2+2x+1+2018\)
\(A=\left(x-2y\right)^2+\left(x+1\right)^2+2018\ge2018\)
\(A_{min}=2018\) khi \(\left\{{}\begin{matrix}x=-1\\y=-\frac{1}{2}\end{matrix}\right.\)
\(B=-\left(4x^2+4xy+y^2\right)-\left(x^2-6x+9\right)+2029\)
\(B=-\left(2x+y\right)^2-\left(x-3\right)^2+2029\le2029\)
\(B_{max}=2029\) khi \(\left\{{}\begin{matrix}x=3\\y=-6\end{matrix}\right.\)