K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

\(a,A=2x^2+9y^2-6xy-6x-12y+2049\)

\(=x^2-6xy+9y^2+x^2-10x+25+4x-12y+2024\)

\(=\left(x-3y\right)^2+\left(x-5\right)^2+4\left(x-3y\right)+2024\)

\(=\left(x-3y\right)^2+4\left(x-3y\right)+4+\left(x-5\right)^2+2020\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+2020\)

\(A_{min}=2020\Leftrightarrow\hept{\begin{cases}\left(x-3y+2\right)^2=0\\\left(x-5\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x-5=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-3y+2=0\\x=5\end{cases}\Rightarrow5-3y+2=0}\)

\(\Rightarrow3y=7\Leftrightarrow y=\frac{7}{3}\)

Vậy \(A_{min}=2020\Leftrightarrow\hept{\begin{cases}x=5\\y=\frac{7}{3}\end{cases}}\)

b tương tự nhé

27 tháng 1 2022

H=\(x^6-2x^3+x^2-2x+2\)

\(=x^6+2x^5+3x^4+2x^2-2x^5-4x^4-6x^3-4x^2-4x+x^4+2x^3+3x^2+2x+2\)

\(=x^2\left(x^4+2x^3+3x^2+2\right)-2x\left(x^4+2x^3+3x^2+2\right)+\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x^2-2x+1\right)\left(x^4+2x^3+3x^2+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left(x^2+2x+2\right)\)

\(=\left(x-1\right)^2\left(x^2+1\right)\left[\left(x+1\right)^2+1\right]\text{≥}0\)

Vì \(\left\{{}\begin{matrix}\left(x-1\right)^2\text{≥}0\\\left(x^2+1\right)\text{≥}1\\\left(x+1\right)^2+1\text{≥}1\end{matrix}\right.\)

⇒ MinH=0 ⇔ \(x=1\)