Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Áp dụng công thức trung tuyến:
\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)
\(=\dfrac{4a^2+b^2+c^2}{4}\)
\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)
\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)
\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)
a) Gọi điểm M(x,0). Ta có MA = MB
=> MA2 = MB2
=> (1 - x)2 + (-3 - 0)2 = (3 - x)2 + (-5 - 0)2
1 - 2x + x2 + 9 = 9 - 6x + x2 + 25
4x = 24
x = 6
Vậy điểm M(6, 0)
b) Gọi N(0, y), ta có NA vuông góc với AB
=> Tích vô hướng giữa hai vector AN và vector AB bằng 0
=> (0 - 1, y + 3) . (3 - 1, -5 + 3) = 0
-2 - 2(y + 3) = 0
y = -4
Vậy N(0, -4)
1: A(2;0); B(-3;4); C(1;-5)
Tọa độ vecto AB là:
\(\left\{{}\begin{matrix}x=-3-2=-5\\y=4-0=4\end{matrix}\right.\)
=>\(\overrightarrow{AB}=\left(-5;4\right)\)
Tọa độ vecto AC là:
\(\left\{{}\begin{matrix}x=1-2=-1\\y=-5-0=-5\end{matrix}\right.\)
Vậy: \(\overrightarrow{AC}=\left(-1;-5\right)\)
\(\overrightarrow{AB}=\left(-5;4\right)\)
Vì \(\left(-1\right)\cdot\left(-5\right)=5< >-20=-5\cdot4\)
nên A,B,C không thẳng hàng
=>A,B,C là ba đỉnh của một tam giác
2: Tọa độ trọng tâm G của ΔABC là:
\(\left\{{}\begin{matrix}x=\dfrac{2-3+1}{3}=\dfrac{0}{3}=0\\y=\dfrac{0+4-5}{3}=-\dfrac{1}{3}\end{matrix}\right.\)
3:
\(\overrightarrow{AB}=\left(-5;4\right);\overrightarrow{DC}=\left(1-x;-5-y\right)\)
ABCD là hình bình hành
nên \(\overrightarrow{AB}=\overrightarrow{DC}\)
=>\(\left\{{}\begin{matrix}1-x=-5\\-5-y=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1+5=6\\y=-5-4=-9\end{matrix}\right.\)
Vậy: D(6;-9)
4: \(\overrightarrow{MA}=\left(2-x;-y\right);\overrightarrow{MB}=\left(-3-x;4-y\right);\overrightarrow{MC}=\left(1-x;-5-y\right)\)
\(2\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}=\overrightarrow{0}\)
=>\(\left\{{}\begin{matrix}2\left(2-x\right)+\left(-3-x\right)+3\left(1-x\right)=0\\2\left(-y\right)+\left(4-y\right)+3\left(-5-y\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4-2x-3-x+3-3x=0\\-2y+4-y-15-3y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-6x+4=0\\-6y-11=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-6x=-4\\-6y=11\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=-\dfrac{11}{6}\end{matrix}\right.\)
vậy: \(M\left(\dfrac{2}{3};-\dfrac{11}{6}\right)\)
5:
A(2;0); B(-3;4); C(1;-5); N(x;y)
A là trọng tâm của ΔBNC
=>\(\left\{{}\begin{matrix}x_A=\dfrac{x_B+x_N+x_C}{3}\\y_A=\dfrac{y_B+y_N+y_C}{3}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2=\dfrac{-3+1+x}{3}\\0=\dfrac{4-5+y}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=6\\y-1=0\end{matrix}\right.\)
=>x=8 và y=1
Vậy: N(8;1)
6: A là trung điểm của BE
=>\(\left\{{}\begin{matrix}x_B+x_E=2\cdot x_A\\y_B+y_E=2\cdot y_A\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-3+x_E=2\cdot2=4\\4+y_E=2\cdot0=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_E=7\\y_E=-4\end{matrix}\right.\)
Vậy: E(7;-4)
Do b là cạnh của tam giác nên b > 0
Đặt \(f\left(x\right)=b^2x^2-\left(b^2+c^2-a^2\right)x+c^2>0,\forall x\)
Theo định lý của dấu về tam thức bậc 2
\(\Rightarrow\left\{{}\begin{matrix}b^2>0\left(đúng\right)\\\Delta< 0\end{matrix}\right.\)\(\Rightarrow\Delta< 0\)
\(\Leftrightarrow\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\)
Chứng minh rằng \(\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\)
\(\Leftrightarrow\left(b^2+c^2-a^2\right)^2< 4b^2c^2\)
\(\Leftrightarrow b^2+c^2-a^2< 2bc\)
\(\Leftrightarrow b^2-2bc+c^2< a^2\)
\(\Leftrightarrow\left(b-c\right)^2< a^2\)
\(\Leftrightarrow b-c< a\)
\(\Leftrightarrow b< c+a\)
Theo bất đẳng thức tam giác thì \(b< c+a\)
\(\Rightarrow\)\(\Delta=\left(b^2+c^2-a^2\right)^2-4b^2c^2< 0\) ( đpcm )
Vậy \(f\left(x\right)=b^2x^2-\left(b^2+c^2-a^2\right)x+c^2>0,\forall x\)
Ta có:
\(\left(m^2+n^2\right)^2=\left(m^2-n^2\right)^2+\left(2mn\right)^2\left(1\right)\)
\(\Leftrightarrow m^4+2m^2n^2+n^4=m^4-2m^2n^2+n^4+4m^2n^2\)
\(\Leftrightarrow m^4+2m^2n^2+n^4=m^4+2m^2n^2+n^4\) (luôn đúng)
Lạ có: \(a=m^2+n^2;b=m^2-n^2;c=2mn\)
Nên từ \(\left(1\right)\) suy ra \(a^2=b^2+c^2\)
Đúng theo định lý Py-ta-go đảo
Hay a,b,c là cạnh một tam giác vuông