Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{\left(x-1\right)^2}{x-2}=\dfrac{\left(x-2\right)^2+2\left(x-2\right)+1}{x-2}=x-2+2+\dfrac{1}{x-2}\ge2+2\sqrt{\left(x-2\right).\dfrac{1}{x-2}}=4\)
GTNN là 4 khi x=3
Câu a)
Từ \(\tan a=3\Leftrightarrow \frac{\sin a}{\cos a}=3\Rightarrow \sin a=3\cos a\)
Do đó:
\(\frac{\sin a\cos a+\cos ^2a}{2\sin ^2a-\cos ^2a}=\frac{3\cos a\cos a+\cos ^2a}{2(3\cos a)^2-\cos ^2a}\)
\(=\frac{\cos ^2a(3+1)}{\cos ^2a(18-1)}=\frac{4}{17}\)
Câu b)
Có: \(\cot \left(\frac{\pi}{2}-x\right)=\tan x=\frac{\sin x}{\cos x}\)
\(\cos\left(\frac{\pi}{2}+x\right)=-\sin x\)
\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)=\frac{-\sin ^2x}{\cos x}\)
Và:
\(\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{\sin x\cot x}{\cos^2x}=\frac{\sin x.\frac{\cos x}{\sin x}}{\cos^2x}=\frac{1}{\cos x}\)
Do đó:
\(\Rightarrow \cot \left(\frac{\pi}{2}-x\right)\cos \left(\frac{\pi}{2}+x\right)+\frac{\sin (\pi-x)\cot x}{1-\sin ^2x}=\frac{1-\sin ^2x}{\cos x}=\frac{\cos ^2x}{\cos x}=\cos x\)
Ta có đpcm.
Ta có:\(sin^6\left(\dfrac{x}{2}\right)-cos^6\left(\dfrac{x}{2}\right)\)=[sin2\(\left(\dfrac{x}{2}\right)\)-cos2\(\left(\dfrac{x}{2}\right)\)][sin4\(\left(\dfrac{x}{2}\right)\)+cos4\(\left(\dfrac{x}{2}\right)\)+sin2\(\left(\dfrac{x}{2}\right)\)+cos2\(\left(\dfrac{x}{2}\right)\)]=-cos(2.\(\dfrac{x}{2}\)){[sin2\(\left(\dfrac{x}{2}\right)\)+cos2\(\left(\dfrac{x}{2}\right)\)]2-sin2\(\left(\dfrac{x}{2}\right)\)cos2\(\left(\dfrac{x}{2}\right)\)}=-cosx[1-sin2\(\left(\dfrac{x}{2}\right)\)cos2\(\left(\dfrac{x}{2}\right)\)]
=-cosx[1-\(\dfrac{1}{4}\left(sin\left(\dfrac{x}{2}+\dfrac{x}{2}\right)+sin\left(\dfrac{x}{2}-\dfrac{x}{2}\right)\right)^2\)]
=-cosx(1-\(\dfrac{1}{4}sin^2x\))
=\(\dfrac{1}{4}cosx\left(sin^2x-4\right)\)
Điều kiện \(a>0\)
\(A=\sqrt[4]{\frac{3}{4a}}.\sqrt[4]{\frac{4a}{3}}.x\sqrt{a-x^4}\le\sqrt[4]{\frac{3}{4a}}\left(-x^4+\sqrt{\frac{4a}{3}}x^2+a\right)\)
\(A\le\sqrt[4]{\frac{3}{4a}}\left[\frac{4a}{3}-\left(x^2-\sqrt{\frac{a}{3}}\right)^2\right]\le\frac{4a}{3}\sqrt[4]{\frac{3}{4a}}\)
Dấu "=" xảy ra khi \(x=\sqrt[4]{\frac{a}{3}}\)
a) \(sin\left(x+\dfrac{\pi}{2}\right)=cos\left[\dfrac{\pi}{2}-\left(x+\dfrac{\pi}{2}\right)\right]=cos\left(-x\right)=cosx\)
a : Đúng.
b) \(cos\left(x+\dfrac{\pi}{2}\right)=sin\left[\dfrac{\pi}{2}-\left(x+\dfrac{\pi}{2}\right)\right]=sin\left(-x\right)=-cosx\)
b: Sai.
c) \(sin\left(x-\pi\right)=-sin\left(\pi-x\right)=-sinx\).
d: Sai.
d) \(cos\left(x-\pi\right)=cos\left(\pi-x\right)=cosx\)
c: Đúng.
\(x+\dfrac{16}{x-1}\\ =x-1+\dfrac{16}{x-1}+1\)
Áp dụng BĐT Cô-si ta có:
\(x-1+\dfrac{16}{x-1}+1\\ \ge2\sqrt{\left(x-1\right).\dfrac{16}{x-1}}+1\\ =2\sqrt{16}+1\\ =9\)
Dấu "=" xảy ra
\(\Leftrightarrow x-1=\dfrac{16}{x-1}\\ \Leftrightarrow\left(x-1\right)^2=16\\ \Leftrightarrow\left[{}\begin{matrix}x-1=4\\x-1=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)