K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 :

\(\dfrac{x+4}{x^2-9}-\dfrac{2}{x+3}=\dfrac{4x}{3x-x^2}\) ( ĐK : \(\left\{{}\begin{matrix}x\ne0\\x\ne-3\\x\ne3\end{matrix}\right.\) )

\(\Leftrightarrow\dfrac{x\left(x+4\right)}{x\left(x-3\right)\left(x+3\right)}-\dfrac{2x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{-4x\left(x+3\right)}{x\left(x-3\right)\left(x+3\right)}\)

\(\Leftrightarrow x\left(x+4\right)-2x\left(x-3\right)=-4x\left(x+3\right)\)

\(\Leftrightarrow x^2+4x-2x^2+6x+4x^2+12x=0\)

\(\Leftrightarrow3x^2+22x=0\)

\(\Leftrightarrow x\left(3x+22\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+22=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(L\right)\\x=-\dfrac{22}{3}\left(N\right)\end{matrix}\right.\)

Vậy \(x=-\dfrac{22}{3}\)

Bài 2 : \(x\left(x+1\right)\left(x^2+x+1\right)=42\)

\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x+1\right)=42\)

Đặt \(x^2+x=t\) . Phương trình trở thành :

\(t\left(t+1\right)=42\)

\(\Leftrightarrow t^2+t-42=0\)

\(\Leftrightarrow\left(t-6\right)\left(t+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t-6=0\\t+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}t=6\\t=-7\end{matrix}\right.\)

Với \(t=6\)

\(\Leftrightarrow x^2+x=6\)

\(\Leftrightarrow x^2+x-6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Với \(t=-7\)

\(\Leftrightarrow x^2+x=-7\)

\(\Leftrightarrow x^2+x+7=0\)

---> Phương trình vô nghiệm !

Vậy \(x=-3;x=2\)

16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ne y\\y\ge-1\end{cases}}\)

Đặt \(\hept{\begin{cases}\frac{1}{x-y}=a\left(a\ne0\right)\\\sqrt{y+1}=b\left(b\ge0\right)\end{cases}}\)hệ phương trình đã cho trở thành

\(\hept{\begin{cases}2a+b=4\\a-3b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+b=4\\2a-6b=-10\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=14\\2a+b=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{x-y}=1\\\sqrt{y+1}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=1\\y+1=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\end{cases}}\left(tm\right)\)

Vậy ... 

16 tháng 5 2021
ĐKXĐ: x ≠ y ; y ≥ − 1 Đặt 1 x − y = a ; √ y + 1 = b (ĐK: a ≠ 0 ; b ≥ 0 ) Khi đó hệ phương trình trở thành { 2 a + b = 4 a − 3 b = − 5 ⇔ { 6 a + 3 b = 12 a − 3 b = − 5 ⇔ { 7 a = 7 b = 4 − 2 a ⇔ { a = 1 ( tm ) b = 2 ( tm ) Với ⎧ ⎪ ⎨ ⎪ ⎩ a = 1 b = 2 ⇒ ⎧ ⎪ ⎨ ⎪ ⎩ 1 x − y = 1 √ y + 1 = 2 ⇒ { x − y = 1 y + 1 = 4 ⇔ { x − 3 = 1 y = 3 ⇔ { x = 4 ( tm ) y = 3 ( tm ) Vậy hệ phương trình đã cho có nghiệm { x = 4 y = 3 . 2) Xét phương trình hoành độ giao điểm giữa đường thẳng ( d ) và Parabol ( P ) là: x 2 = 2 ( m − 1 ) x − m 2 + 2 m ⇔ x 2 − 2 ( m − 1 ) x + m 2 − 2 m = 0 (1) a) Với m = 2 phương trình (1) trở thành: x 2 − 2 ( 2 − 1 ) x + 2 2 − 2.2 = 0 ⇔ x 2 − 2 x = 0 ⇔ x ( x − 2 ) = 0 ⇔ [ x = 0 x = 2 - Với x = 0 ⇒ y = 0 2 = 0 ⇒ A ( 0 ; 0 ) - Với x = 2 ⇒ y = 2 2 = 4 ⇒ B ( 2 ; 4 ) Vậy khi m = 2 thì ( P ) cắt ( d ) tại hai điểm phân biệt A ( 0 ; 0 ) ; B ( 2 ; 4 ) . b) Ta có: Δ ′ = b ′ 2 − a c = [ − ( m − 1 ) ] 2 − ( m 2 − 2 m ) = m 2 − 2 m + 1 − m 2 + 2 m = 1 > 0 Do Δ ′ > 0 nên phương trình (1) luôn có hai nghiệm phân biệt x 1 ; x 2 với mọi m . ⇒ Đường thẳng ( d ) luôn cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ x 1 ; x 2 với mọi m . Khi đó theo hệ thức Viet, ta có: { x 1 + x 2 = 2 m − 2 x 1 x 2 = m 2 − 2 m Để đường thẳng ( d ) cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ đối nhau ⇔ x 1 + x 2 = 0 ⇔ 2 m − 2 = 0 ⇔ m = 1 ( tm ) Vậy m = 1 thì đường thẳng ( d ) luôn cắt Parabol ( P ) tại hai điểm phân biệt có hoành độ đối nhau.
16 tháng 5 2021

1) ĐK \(\hept{\begin{cases}x\ge0\\y\ne1\end{cases}}\)

Đặt \(\hept{\begin{cases}2\sqrt{x}=a\left(a\ge0\right)\\\frac{1}{y-1}=b\left(b\ne0\right)\end{cases}}\)hệ phương trình đã cho trở thành 

\(\hept{\begin{cases}a+3b=5\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}2a+6b=10\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}7b=7\\2a-b=3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}2\sqrt{x}=2\\\frac{1}{y-1}=1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\left(tm\right)\)

Vậy ... 

4 tháng 6 2021

1,\(\left\{{}\begin{matrix}2\sqrt{x}+\dfrac{3}{y-1}=5\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)       ĐKXĐ:x≥o,y≠1

\(\left\{{}\begin{matrix}4\sqrt{x}+\dfrac{6}{y-1}=10\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{y-1}=7\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=1\\4\sqrt{x}-\dfrac{1}{1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\4\sqrt{x}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\\sqrt{x}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\left(TM\right)\)

vậy hpt đã cho có nghiệm duy nhất (x,y)=(1,2)

2,a, xét pthđgđ của (d) và (p) khi m=3:

x\(^2\)=3x-1⇔\(x^2-3x+1=0\)

Δ=(-3)\(^2\)-4.1.1=5>0

⇒pt có 2 nghiệm pb

\(x_1=\dfrac{3+\sqrt{5}}{2}\) ,\(x_2=\dfrac{3-\sqrt{5}}{2}\)

thay x=x\(_1\)=\(\dfrac{3+\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=(\(\dfrac{3+\sqrt{5}}{2}\))\(^2\)=\(\dfrac{14+6\sqrt{5}}{4}\)⇒A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\))

thay x=x\(_2\)=\(\dfrac{3-\sqrt{5}}{2}\) vào hs y=x\(^2\) ta được:

y=\(\left(\dfrac{3-\sqrt{5}}{2}\right)^2=\dfrac{14-6\sqrt{5}}{4}\)⇒B(\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

vậy tọa độ gđ của (d) và (p) là A(\(\dfrac{3+\sqrt{5}}{2},\dfrac{14+6\sqrt{5}}{4}\)) và B (\(\dfrac{3-\sqrt{5}}{2},\dfrac{14-6\sqrt{5}}{4}\))

b,xét pthđgđ của (d) và (p) :

\(x^2=mx-1\)\(x^2-mx+1=0\) (*)

                       Δ=(-m)\(^2\)-4.1.1=m\(^2\)-4

⇒pt có hai nghiệm pb⇔Δ>0

                                  ⇔m\(^2\)-4>0⇔m>16

với m>16 thì pt (*) luôn có hai nghiệm pb \(x_1,x_2\)

theo hệ thức Vi-ét ta có:

(I) \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1.x_2=1\end{matrix}\right.\)

\(x_1,x_2\) TM \(x_2\)(x\(_1\)\(^2\)+1)=3

\(x_2.x_1^2\)+\(x_2\)=3⇔\(x_2.x_1.x_1+x_2=3\)⇔(\(x_2.x_1\))(\(x_1+x_2\))=3 (**)

thay  (I) vào (**) ta được:

1.m=3⇔m=3 (TM m≠0)

vậy m=3 thì (d) cắt (p) tại hai điểm pb có hoanh độ \(x_1.x_2\) TM \(x_2\)(\(x_1^2+1\))=3

                      

 

 

Bài 1: Cho A=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\) với \(x\ge0,x\ne4\)a) Rút gọn và tìm các giá trị của x để A=2b) Tìm x sao cho A<1bài 2: Cho (P): \(y=x^2\) và (d): y=x+m-4. Tìm m để d cắt P tại 2 điểm phân biệt có hoành độ tương ứng là x1, x2 sao cho \(x1^2+x2^2=10\)Bài 3: Cho nửa đường tròn tâm O đường kính AB. M là 1 điểm bất kỳ thuộc nửa đường tròn ( M khác A,B), gọi N là điểm trên cung AM ( N khác A, M và...
Đọc tiếp

Bài 1: Cho A=\(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}-\dfrac{1}{2-\sqrt{x}}\) với \(x\ge0,x\ne4\)

a) Rút gọn và tìm các giá trị của x để A=2

b) Tìm x sao cho A<1

bài 2: Cho (P): \(y=x^2\) và (d): y=x+m-4. Tìm m để d cắt P tại 2 điểm phân biệt có hoành độ tương ứng là x1, x2 sao cho \(x1^2+x2^2=10\)

Bài 3: Cho nửa đường tròn tâm O đường kính AB. M là 1 điểm bất kỳ thuộc nửa đường tròn ( M khác A,B), gọi N là điểm trên cung AM ( N khác A, M và MN không song song AB). Đường thẳng AN cắt BM ở K, AM cắt BN ở I, KI cắt AB ở H.

a) Chứng minh KNIM nội tiếp và KI vuông góc AB.

b) CM KN.KA= KM.KB

c) Cm \(\widehat{MHN}=\widehat{NAM}+\widehat{NBM}\) và \(\widehat{MON}=\widehat{NHM}\)

d) Gọi giao của KH với nửa đường tròn là E, giả sử KH = 4cm, HI= 1cm. Tính KE?

1
9 tháng 6 2021

Bài 1

a) A = \(\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\) (ĐK: x ≥ 0; x ≠ 4)

↔ A = \(\dfrac{x+2-\sqrt{x}+\sqrt{x}+2}{x-4}\)

↔ A = \(\dfrac{x+4}{x-4}\)

Để A = 2 ↔ \(\dfrac{x+4}{x-4}\) = 2 (ĐK: x ≠ 4)

→  \(x+4=2\left(x-4\right)\)

↔  \(2x-x=4+8\)

↔ \(x=12\)

Vậy x = 12 thì A = 2

b) Để A < 1

↔ \(\dfrac{x+4}{x-4}\) < 1

→  \(x+4\) < \(x-4\)

↔ 0x < -8 (vô lý)

Vậy không có giá trị của x nào thỏa mãn A < 1

1: \(P=\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\cdot\dfrac{\left(\sqrt{x}+3\right)^2}{-\left(1-\sqrt{x}\right)}+1\)

\(=\dfrac{-\sqrt{x}-3+\sqrt{x}}{\sqrt{x}}=-\dfrac{3}{\sqrt{x}}\)

NV
5 tháng 4 2022

2.

Hai đường thẳng cắt nhau tại 1 điểm thuộc trục hoành khi và chỉ khi:

\(-\dfrac{m}{2}=3-m\)

\(\Leftrightarrow m=6\)

Bài 2: 

a: Để hai đường thẳng cắt nhau tại một điểm nằm trên trục Oy thì \(m^2-2=7\)

hay \(m\in\left\{3;-3\right\}\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}10x-2y=6\\3x+2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Câu 1: 

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne1\\y\ne-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2x}{x-1}+\dfrac{1}{y+2}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2x-2+2}{x-1}+\dfrac{1}{y+2}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x-1}-\dfrac{2}{y+2}=4\\\dfrac{2}{x-1}+\dfrac{1}{y+2}=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6}{x-1}-\dfrac{4}{y+2}=8\\\dfrac{6}{x-1}+\dfrac{3}{y+2}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y+2}=-1\\\dfrac{6}{x-1}+\dfrac{3}{y+2}=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+2=7\\\dfrac{6}{x-1}+\dfrac{3}{7}=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\\dfrac{6}{x-1}=\dfrac{60}{7}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=\dfrac{7}{10}\\y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{17}{10}\left(nhận\right)\\y=5\left(nhận\right)\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left(x,y\right)=\left(\dfrac{17}{10};5\right)\)

Câu 2: 

a) Phương trình hoành độ giao điểm của (P) và (d) là:

\(x^2=3x+m^2-1\)

\(\Leftrightarrow x^2-3x-m^2+1=0\)

\(\Delta=\left(-3\right)^2-4\cdot1\cdot\left(-m^2+1\right)\)

\(=9-4\left(-m^2+1\right)=9+4m^2-4=4m^2+5>0\forall m\)

Vậy: (d) luôn cắt (P) tại hai điểm phân biệt với mọi m

17 tháng 5 2021

b, \(đk:x\ge2\)

Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0

 \(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)

\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)

\(\Leftrightarrow x^3-11x^2+35x-25\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\)  (*)

\(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)

Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5

 

 

 

 

 

 

17 tháng 5 2021

c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)

\(\Leftrightarrow4x^3+x>0\)

Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))

\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....

d) Đk: \(x\ge\dfrac{3}{4}\)

Áp dụng bđt cosi:

 \(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)

 \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)

\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)

\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)

Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)

Dấu = xảy ra khi x=1 (tm)

 

 

 


 

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290