Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có:
\(P=\left(1-\frac{x-3\sqrt{x}}{x-9}\right)\div\left(\frac{\sqrt{x}-9}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)
\(P=\frac{x-9-x+3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\left[\frac{\left(9-\sqrt{x}\right)\left(3+\sqrt{x}\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right]\)
\(P=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\div\frac{-x+6\sqrt{x}+27+x-4\sqrt{x}+2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3}{\sqrt{x}+3}\div\frac{x+2\sqrt{x}+20}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{3}{\sqrt{x}+3}\cdot\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{x+2\sqrt{x}+20}\)
\(P=\frac{3\left(\sqrt{x}-2\right)}{x+2\sqrt{x}+20}=\frac{3\sqrt{x}-6}{x+2\sqrt{x}+20}\)
Lời giải:
a) \(A=4\sqrt{x}-\frac{(\sqrt{x}+3)^2(\sqrt{x}-3)}{x-9}=4\sqrt{x}-\frac{(\sqrt{x}+3)(x-9)}{x-9}=4\sqrt{x}-(\sqrt{x}+3)\)
\(=3\sqrt{x}-3\)
b)
\(B=\frac{\sqrt{9x^2+12x+4}}{3x+2}=\frac{\sqrt{(3x)^2+2.3x.2+2^2}}{3x+2}=\frac{\sqrt{(3x+2)^2}}{3x+2}=\frac{|3x+2|}{3x+2}\)
\(B=1\) nếu $x>\frac{-2}{3}$
$B=-1$ nếu $x< \frac{-2}{3}$
a) \(2x-\sqrt{4x^2+4x+1}=2x-\sqrt{\left(2x+1\right)^2}=2x-\left|2x+1\right|\)
Vì \(x< -\frac{1}{2}\)nên \(\left|2x+1\right|=-\left(2x+1\right)\)
\(\Rightarrow2x+2x+1=4x+1\)
b) \(3x+2-\sqrt{9x^2-12x+4}=3x+2-\sqrt{\left(3x-2\right)^2}=3x+2-\left|3x-2\right|\)
Khi \(x\ge\frac{2}{3}\)thì \(\left|3x-2\right|=3x-2\)
\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-3x+2=4\)
Khi \(x< \frac{2}{3}\) thì \(\left|3x-2\right|=2-3x\)
\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-\left(2-3x\right)=6x\)
c) \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)
Đặt \(\sqrt{a}=x\) ta được : \(3x-4x+7x=6x\)\(=6\sqrt{a}\)( Do \(a\ge0\))
d) \(\sqrt{160a}+2\sqrt{40a}-3\sqrt{90a}=4\sqrt{10a}+4\sqrt{10a}-9\sqrt{10a}\)\(=-\sqrt{10}\)
TK NKA !!!
\(\Leftrightarrow-\left(x^2-2x\right)+\sqrt{6\left(x^2-2x\right)+7}=0\) ĐK \(\sqrt{6x^2-12x+7}\ge0\)
Đặt \(t=x^2-2x\left(t\ge0\right)\Leftrightarrow pt:-t+\sqrt{6t+7}=0\Leftrightarrow\sqrt{6t+7}=t\\ 6t+7-t^2=0\Leftrightarrow\left[\begin{array}{nghiempt}t=7\left(tm\right)\\t=-1\left(ktm\right)\end{array}\right.\)
Với \(t=7\Leftrightarrow x^2-2x-7=0\Leftrightarrow x=1\pm2\sqrt{2}\left(tm\right)\)
Vậy S={\(1\pm2\sqrt{2}\)}
\(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\)
\(=\left(\frac{3x-3\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}+\frac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\right).\left(\sqrt{x}+2\right)\)
\(=\frac{3x-3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}.\left(\sqrt{x}+2\right)\)
\(=\frac{3\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=3\sqrt{x}\)
\(A=\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\)
\(=\frac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}\)
\(=\frac{\left(x+2\right)\left(x+3\right)+x\sqrt{\left(3-x\right)\left(3+x\right)}}{x\left(3-x\right)+\left(x+2\right)\sqrt{\left(3-x\right)\left(3+x\right)}}\)
\(=\frac{\sqrt{3+x}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}{\sqrt{3-x}\left(\left(x+2\right)\sqrt{x+3}+x\sqrt{3-x}\right)}\)
\(=\frac{\sqrt{3+x}}{\sqrt{3-x}}\)
\(B=\frac{x^2-5x+6+3\sqrt{x^2-6x+8}}{3x-12+\left(x-3\right)\sqrt{x^2-6x+8}}\)
\(=\frac{\left(x-3\right)\left(x-2\right)+3\sqrt{\left(x-4\right)\left(x-2\right)}}{3\left(x-4\right)+\left(x-3\right)\sqrt{\left(x-4\right)\left(x-2\right)}}\)
\(=\frac{\sqrt{x-2}\left(\left(x-3\right)\sqrt{x-2}+3\sqrt{x-4}\right)}{\sqrt{x-4}\left(3\sqrt{x-4}+\left(x-3\right)\sqrt{x-2}\right)}\)
\(=\frac{\sqrt{x-2}}{\sqrt{x-4}}\)
\(A=4\sqrt{x}-\frac{\left(\sqrt{x}+3\right)^2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=4\sqrt{x}-\left(\sqrt{x}+3\right)\)
\(=3\sqrt{x}-3\)
\(B=\frac{\sqrt{\left(3x+2\right)^2}}{3x+2}=\frac{|3x+2|}{3x+2}\)
\(TH1:3x+2>0\Rightarrow B=1\)
\(TH2:3x+2< 0\Rightarrow B=-1\)
A <=> 4√x - [ ( (√x )^2 + 2√x3+ 3^2)*( √x -3)]/ (x-9)
<=> 4√x - [(√x+3)^2×(√x-3)]/( x-9)
<=> 4√x - [(√x+3)*(x-9)]/(x-9)
<=> 4√x - √x -3
<=> 3√x -3
b, <=> √[(3*x) ^2+2*3x*2+2^2]/(3x+2)
<=> √[( 3x+2)^2] /(3x+2)
<=> (3x+2)/(3x+2) = 1