Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 4.
a. hai tam giác đều là OAB,OCD
hai hình thoi là ABOF và BCOA
hai hình chữ nhật là :ABDE và ACDF
b.\(S_{ABDE}+S_{AOEF}=AB\times AE+\frac{1}{2}AB\times AE=21060cm^2\)
bài 5. ta có
\(n^2+n=n\left(n+1\right)\text{ luôn là số chẵn với mọi n do hai số tự nhiên liên tiếp luôn có 1 số chẵn}\)
nên \(n^2+n+1\text{ luôn là số lẻ}\)
Bài 1 :
a) \(1-\left(5\frac{3}{8}+x-6\frac{5}{24}\right):12\frac{2}{5}=0\)
\(\Rightarrow\left(\frac{43}{8}+x-\frac{149}{24}\right):\frac{62}{5}=1\)
\(\Rightarrow\left(\frac{129}{24}-\frac{149}{24}\right)+x=\frac{62}{5}\)
\(\Rightarrow\frac{-5}{6}+x=\frac{62}{5}\)
\(\Rightarrow x=\frac{62}{5}-\frac{-5}{6}=\frac{397}{30}\)
Xin lỗi , mình không biết làm phần c bài 1
Bài 2 :
Ta có : \(A=\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{10}\)
\(\Rightarrow7A=-1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^9\)
\(\Rightarrow7A-A=\left[-1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^9\right]-\left[\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{10}\right]\)
\(\Rightarrow6A=-1-\left(\frac{-1}{7}\right)^{10}\Rightarrow A=\frac{-1-\left(\frac{-1}{7}\right)^{10}}{6}\)
\(\dfrac{15}{34}+\dfrac{1}{3}+\dfrac{19}{34}-\dfrac{4}{3}+\dfrac{3}{7}=\left(\dfrac{15}{34}+\dfrac{19}{34}\right)+\left(\dfrac{1}{3}-\dfrac{4}{3}\right)+\dfrac{3}{7}=1-1+\dfrac{3}{7}=\dfrac{3}{7}\)
a)
\(175\cdot19+38\cdot175+43\cdot175\\ =175\cdot19+175\cdot38+175\cdot43\\ =175\cdot\left(19+38+43\right)\\ =175\cdot100\\ =17500\)
b)
\(125\cdot75+125\cdot13-80\cdot125\\ =125\cdot75+125\cdot13-125\cdot80\\ =125\cdot\left(75+13-80\right)\\ =125\cdot10\\ =125\cdot8\\ =1000\)
a, 175. 19 + 38. 175 + 43. 175
= 175. 19 + 175. 38 + 175. 43
= 175.(19 + 38 + 43)
= 175. 100
= 17500
2/
Xét phân số \(\dfrac{2n-3}{n+1}=\dfrac{2n+2-5}{n+1}=\dfrac{2n+2}{n+1}-\dfrac{5}{n+1}=\dfrac{2\left(n+1\right)}{n+1}-\dfrac{5}{n+1}=2-\dfrac{5}{n+1}\)
\(n\in Z\Rightarrow2n-3\inƯ\left(5\right)=\left\{-1;-5;1;5\right\}\)
Ta có bảng:
2n - 3 | -1 | -5 | 1 | 5 |
n | 1 | -1 | 2 | 4 |
Vậy \(n\in\left\{-1;1;2;4\right\}\)
1/
(x + 1) + (x + 3) + (x + 5) + ... + (x + 999) = 500
<=> (x + x + x + ... + x) + (1 + 3 + 5 + ... + 999) = 500
Xét tổng A = 1 + 3 + 5 + ... + 999
Số số hạng của A là: (999 - 1) : 2 + 1 = 500
Tổng A là: (999 + 1) x 500 : 2 = 250 000
Do A có 500 số hạng nên có 500 ẩn x.
Vậy ta có: 500x + 250 000 = 500
=> 500x = -249 500
=> x = 499
Vậy x = 499