K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

Bạn viết đề bài ra nhé !

13 tháng 7 2018

Bài 16: Biểu thức sau đây xác định với giá trị nào của x?

a) \(\sqrt{\left(x-1\right)\left(x-3\right)}\)        c) \(\sqrt{\frac{x-2}{x+3}}\)

b) \(\sqrt{x^2-4}\)                         d) \(\sqrt{\frac{2+x}{5-x}}\)

Bài 22: Với n là số tự nhiên, chứng minh đẳng thức:

\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)

Bài 2: 

Thay x=3 và y=-5 vào (d), ta được:

b-6=-5

hay b=1

5) Ta có: \(\dfrac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\)

\(=\dfrac{5\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)^2}{5\left(\sqrt{3}-\sqrt{2}\right)}\)

=1

12 tháng 7 2021

cảm ơn nha

Bài 7:

a: ĐKXĐ: \(x\notin\left\{\dfrac{1}{2};-5\right\}\)

\(\dfrac{x+5}{2x-1}-\dfrac{1-2x}{x+5}-2=0\)

=>\(\dfrac{x+5}{2x-1}+\dfrac{2x-1}{x+5}-2=0\)

=>\(\dfrac{\left(x+5\right)^2+\left(2x-1\right)^2}{\left(2x-1\right)\left(x+5\right)}=2\)

=>\(\left(x+5\right)^2+\left(2x-1\right)^2=2\left(2x-1\right)\left(x+5\right)\)

=>\(x^2+10x+25+4x^2-4x+1=2\left(2x^2+10x-x-5\right)\)

=>\(5x^2+6x+26-4x^2-18x+10=0\)

=>\(x^2-12x+36=0\)

=>\(\left(x-6\right)^2=0\)

=>x-6=0

=>x=6(nhận)

b: ĐKXĐ: \(x\notin\left\{3;-2;4\right\}\)

\(1-\dfrac{8}{x-4}=\dfrac{5}{3-x}-\dfrac{8-x}{x+2}\)

=>\(\dfrac{x-4-8}{x-4}=\dfrac{-5}{x-3}+\dfrac{x-8}{x+2}\)

=>\(\dfrac{x-12}{x-4}=\dfrac{-5\left(x+2\right)+\left(x-8\right)\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}\)

=>\(\dfrac{x-12}{x-4}=\dfrac{-5x-10+x^2-11x+24}{\left(x-3\right)\left(x+2\right)}\)

=>\(\left(x-12\right)\left(x^2-x-6\right)=\left(x-4\right)\left(x^2-16x+14\right)\)

=>\(x^3-x^2-6x-12x^2+12x+72=x^3-16x^2+14x-4x^2+64x-56\)

=>\(-13x^2+6x+72=-20x^2+78x-56\)

=>\(7x^2-72x+128=0\)

=>\(\left[{}\begin{matrix}x=8\left(nhận\right)\\x=\dfrac{16}{7}\left(nhận\right)\end{matrix}\right.\)

c: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

\(\dfrac{x-1}{x+2}+\dfrac{2}{x-2}=\dfrac{12}{x^2-4}\)

=>\(\dfrac{x-1}{x+2}+\dfrac{2}{x-2}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)

=>\(\dfrac{\left(x-1\right)\left(x-2\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{12}{\left(x-2\right)\left(x+2\right)}\)

=>\(x^2-3x+2+2x+4=12\)

=>\(x^2-x-6=0\)

=>(x-3)(x+2)=0

=>\(\left[{}\begin{matrix}x=3\left(nhận\right)\\x=-2\left(loại\right)\end{matrix}\right.\)

11 tháng 12 2021

\(1,\\ a,M=\sqrt{3}-1-6\sqrt{3}+\sqrt{3}+1=-4\sqrt{3}\\ b,ĐK:x\ge1\\ PT\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}=1\Leftrightarrow\sqrt{x-1}=\dfrac{1}{2}\\ \Leftrightarrow x-1=\dfrac{1}{4}\Leftrightarrow x=\dfrac{5}{4}\left(tm\right)\\ 2,\\ a,ĐK:x>0;x\ne1\\ P=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}-1+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}=\dfrac{x-1}{\sqrt{x}}\\ b,P< 0\Leftrightarrow x-1< 0\left(\sqrt{x}>0\right)\\ \Leftrightarrow0< x< 1\\ c,P\sqrt{x}=m-\sqrt{x}\\ \Leftrightarrow x-1=m-\sqrt{x}\\ \Leftrightarrow x+\sqrt{x}-m-1=0\\ \text{PT có nghiệm nên }\Delta=1+4\left(m+1\right)\ge0\\ \Leftrightarrow4m+5\ge0\Leftrightarrow m\ge-\dfrac{5}{4}\)