Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}\) và \(\frac{1}{2}\)
Vì 0x = 0 (Với mọi \(x\in R\)); 12x = 1 (Với mọi \(x\in Z\)).
Bài 5:
a) Ta có: A+P=Q
nên A=Q-P
\(=2x^2+5xy-3y^2-6x^2+7xy-4y^2\)
\(=-4x^2+12xy-7y^2\)
b) Ta có: B-Q=P
nên B=P+Q
\(=6x^2-7xy+4y^2+2x^2+5xy-3y^2\)
\(=8x^2-2xy+y^2\)
Bài 6:
a) \(P\left(-\dfrac{1}{2}\right)=4\cdot\left(-\dfrac{1}{2}\right)^2-9\cdot\dfrac{-1}{2}=4\cdot\dfrac{1}{4}+\dfrac{9}{2}=1+\dfrac{9}{2}=\dfrac{11}{2}\)
\(Q\left(\dfrac{2}{3}\right)=3\cdot\dfrac{2}{3}+6=2+6=8\)
b) Đặt P(x)=0
\(\Leftrightarrow x\left(4x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{9}{4}\end{matrix}\right.\)
Đặt Q(x)=0
\(\Leftrightarrow3x+6=0\)
hay x=-2
B5:
a)ta có :A+P=Q suy ra A=Q-P
A=-4x^2+12xy-y^2
b)ta có :B-Q=P suy ra A=Q+P
B=8x^2-2xy+y^2
Bài này bạn Elsa hỏi r mà nhỉ
Link đây nhé, mình giải rất chi tiết r đó: https://olm.vn/hoi-dap/detail/260619760413.html
bài làm
=> góc BDC = góc CED + góc DCE
Ta lại có góc BEC cũng là góc ngoài của tam giác ABE
=> góc BEC = góc BAE + góc ABE
=> góc BEC > góc BAE
Mà góc BEC = góc DEC; góc BAE = góc BAC
=> góc DEC > góc BAC (*)
Mà góc BDC = góc CED + góc DCE
=> góc BDC > góc DCE (**)
Từ (*) và (**) => góc BDC > góc BAC.
Vậy góc BDC > góc BAC.
*Ryeo*
Căng đấy, làm hơi lâu =))
- Gọi giao điểm của OA và BC, OC và AB, OB và AC lần lượt là D, E, F.
- Xét các tam giác:
+) △AOE có \(OA< OE+AE\) (Bất đẳng thức tam giác). Cộng 2 vế cho OC ta được: \(OA+OC< OE+AE+OC\)
\(\Rightarrow OA+OC< AE+CE\) (Do OE + OC = AE)
⇒ △CEB có \(CE< BE+BC\) (Bất đẳng thức tam giác). Cộng 2 vế cho AE ta được: \(AE+CE< BE+BC+AE\)
\(\Rightarrow AE+CE< AB+AC\) (Do BE + AE = AB) (1)
+) △BOD có \(OB< OD+BD\) (Bất đẳng thức tam giác). Cộng 2 vế cho OA ta được: \(OB+OA< OD+BD+OA\)
\(\Rightarrow OB+OA< BD+AD\) (Do OA + OD = AD)
⇒ △ADC có \(AD< AC+DC\) (Bất đẳng thức tam giác). Cộng 2 vế cho BD ta được: \(BD+AD< AC+DC+BD\)
\(\Rightarrow BD+AD< AB+BC\) (Do DC + BD = BC) (2)
+) △AOF có \(OA< AF+OF\) (Bất đẳng thức tam giác). Cộng 2 vế cho OB ta được: \(OA+OB< AF+OF+OB\)
\(\Rightarrow OF+OE< AF+BF\) (Do OF + OB = BF)
⇒ △BCF có \(BF< BC+FC\) (Bất đẳng thức tam giác). Cộng 2 vế cho AF ta được: \(AF+BF< BC+FC+AF\)
\(\Rightarrow AF+BF< BC+AC\) (Do AF + FC = AC) (3)
- Mặt khác:
\(OA+OC+OB+OA+OC+OB< AB+AC+AB+BC+BC+AC\)
\(\Rightarrow2OA+2OB+2OC< 2AB+2AC+2BC\)
\(\Rightarrow2\left(OA+OB+OC\right)< 2\left(AB+AC+BC\right)\)
\(\Rightarrow OA+OB+OC< AB+AC+BC\) (đpcm).