Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-BE cắt AC tại G.
-△BCF có: BG là p/g trong \(\Rightarrow\)\(\dfrac{BC}{BF}=\dfrac{GC}{GF}\)
-△ABC có: CF là p/g ngoài \(\Rightarrow\dfrac{BC}{AC}=\dfrac{BF}{AF}\Rightarrow\dfrac{BC}{BF}=\dfrac{AC}{AF}=\dfrac{AB}{AF}\)
\(\Rightarrow\dfrac{GC}{GF}=\dfrac{AB}{AF}\)
-△BCF có: \(\dfrac{AB}{AF}.\dfrac{GF}{GC}.\dfrac{MC}{MB}=1\) , G∈CF, A∈BF , M∈BC.
\(\Rightarrow\)BG, AC, FM đồng quy tại E (định lí Ceva đảo)
\(\Rightarrow\)F, M,E thẳng hàng.
Chỉ cần dựa trên định lý Ta lét là được
Từ C kẻ đường thẳng song song với AB cắt AD, BE ở K và H
\(\Rightarrow\frac{AF}{FB}.\frac{BD}{CD}.\frac{CE}{EA}=\frac{AB}{CK}.\frac{AF}{FB}.\frac{CH}{AB}\)
\(\Rightarrow\frac{FB}{CH}.\frac{AB}{FB}.\frac{CH}{AB}=1\)
Chứng minh theo lớp 8 rồi nhé
a) BD.\(\sqrt{CH}+CE\sqrt{BH}=AH\sqrt{BC}\)
\(\Leftrightarrow BD\sqrt{CH.BC}+CE\sqrt{BH.BC}=AH.BC=AB.AC\)
\(\Leftrightarrow BD\sqrt{AC^2}+CE\sqrt{AB^2}=AB.AC\Leftrightarrow\dfrac{BD}{AB}+\dfrac{CE}{AC}=1\) (đẳng thức đúng)
Áp dụng định lí Ta- lét ta có:
\(\dfrac{BD}{AB}=\dfrac{BH}{BC};\dfrac{CE}{AC}=\dfrac{CH}{BC}\)
\(\dfrac{BD}{AB}+\dfrac{CE}{AC}=\dfrac{BH+CH}{BC}=\dfrac{BC}{BC}=1\)
em mới học lớp 8 nên cách này em ko hiểu ạ
có cách nào đơn giản ko ạ