Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MO là phân giác của góc AMB và MA=MB
MO là phân giác của góc AMB
=>\(\widehat{AMO}=\dfrac{\widehat{AMB}}{2}=\dfrac{60^0}{2}=30^0\)
Xét ΔOAM vuông tại A có \(tanAMO=\dfrac{OA}{AM}\)
=>\(\dfrac{6}{AM}=tan30=\dfrac{\sqrt{3}}{3}\)
=>\(AM=6\cdot\dfrac{3}{\sqrt{3}}=6\sqrt{3}\left(cm\right)\)
Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)
nên ΔMAB đều
=>\(\widehat{MBA}=60^0\)
Gọi bán kính đường tròn nội tiếp ΔMAB là d
Diện tích tam giác MBA là:
\(S_{MBA}=\dfrac{1}{2}\cdot MA\cdot MB\cdot sinAMB\)
\(=\dfrac{1}{2}\cdot6\sqrt{3}\cdot6\sqrt{3}\cdot sin60=27\sqrt{3}\left(cm^2\right)\)
Nửa chu vi tam giác MBA là:
\(p=\dfrac{6\sqrt{3}+6\sqrt{3}+6\sqrt{3}}{2}=3\sqrt{3}\left(cm\right)\)
Xét ΔMBA có \(S_{MBA}=p\cdot d\)
=>\(d=\dfrac{27\sqrt{3}}{3\sqrt{3}}=9\left(cm\right)\)
a) MA và MB là hai tiếp tuyến từ M đến (O) nên MA = MB => OM là trung trực của AB
=> OM vuông góc AB (tại K) => ^OKI = ^OHM = 900 => \(\Delta\)OKI ~ \(\Delta\)OHM (g.g)
Vậy OI.OH = OK.OM (đpcm).
b) Áp dụng hệ thức lượng trong tam giác vuông có: OI.OH = OK.OM = OA2 = R2 (Không đổi)
Vì d cố định, O cố định nên khoảng cách từ O tới d không đổi hay OH không đổi
Do vậy \(OI=\frac{R^2}{OH}=const\)=> Đường tròn (OI) cố định
Mà K thuộc (OI) (vì ^OKI nhìn đoạn IO dưới góc 900) nên K di chuyển trên (OI) cố định (đpcm).
a) theo tính chất của hai tiếp tuyến cắt nhau , ta có :
AM = MB
Mà OA = OB ( = R )
\(\Rightarrow\)OM thuộc đường trung trực của AB
\(\Rightarrow\)OM \(\perp\)AB
b) Áp dụng hệ thức lượng vào \(\Delta AOM\),ta có :
\(OE.OM=OA^2=R^2\) ( không đổi i)
c) gọi F là giao điểm của AB với OH
Xét \(\Delta OEF\)và \(\Delta OHM\)có :
\(\widehat{HOE}\left(chung\right)\); \(\widehat{OEF}=\widehat{OHM}\left(=90^o\right)\)
\(\Rightarrow\Delta OEF~\Delta OHM\left(g.g\right)\)
\(\Rightarrow\frac{OE}{OH}=\frac{OF}{OM}\Rightarrow OF.OH=OE.OM=R^2\Rightarrow OF=\frac{R^2}{OH}\)
Do đường thẳng d cho trước nên OH không đổi
\(\Rightarrow\)OF không đổi
Do đó đường thẳng AB luôn đi điểm F cố định
a)
Từ M kẻ tiếp tuyến Mx của (O) nên OA vuông góc với Mx
Ta có tứ giác MEHF là tứ giác nội tiếp => góc MFE=góc MHE(1)
Mà góc MHE=góc MAH(2) (+góc HMA=90o)
Từ (1) và (2) => góc MAB = góc MFE
Mặt khác góc MAB=góc BMx (=1/2 số đo cung MB )
=>EF song song với Mx
Om vuông góc Mx => OM vuông góc È
mà MD vuông góc È => o thuộc MD => dpcm