Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A tối giản thì:
(8n + 193, 4n + 3) = 1
Gọi d là ƯC nguyên tố của 8n + 193 và 4n + 3
=> 8n + 193 - 4n - 3 chia hết cho d
=> 4n + 190 chia hết cho d
=> 4n + 3 + 187 chia hết cho d
=> 187 chia hết cho d
Mà d nguyên tố => d = 11 hoặc d = 17
+) Tìm a để 8n + 193 chia hết cho 11, 4n + 3 chia hết cho 11
Vì 8n + 193 = 2.(4n + 3) + 187 nên 4n + 3 chia hết cho 11 thì 8n + 193 chia hết cho 11
=> 4n + 3 = 11k (k thuộc N) => 4n = 11k - 3 => n = \(\frac{11k-3}{4}\)
+) Tìm a để 8n + 193 chia hết cho 17, 4n + 3 chia hết cho 17
Vì 8n + 193 = 2.(4n + 3) + 187 nên 4n + 3 chia hết cho 17 thì 8n + 193 chia hết cho 17
=> 4n + 3 = 17k (k thuộc N) => 4n = 17 - 3 => n = \(\frac{17k-3}{4}\)
Vậy n \(\ne\frac{11k-3}{4}\) và n \(\ne\frac{17k-3}{4}\) thì A tối giản.
\(A=\frac{8n+193}{4n+3}\)
\(=\frac{8n+6+187}{4n+3}\)
\(=\frac{2\left(4n+3\right)+187}{4n+3}\)
\(=2+\frac{187}{4n+3}\)
Đến chỗ này chắc bạn làm tiếp được
A=\(\frac{8n+193}{4n+3}=\frac{4n+6+187}{4n+3}\)
=\(\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A tối giản thì \(187⋮4n+3\)
=> \(4n+3\inƯ\left(187\right)=\left\{11,17,187,1\right\}\)
TH1: 4n + 3 = 11 => 4n = 11 - 3 = 8
=> n = \(\frac{8}{4}=2\)(TMĐK)
TH2: 4n + 3 = 17 => 4n = 17 - 3
= 14 (loại) vì 14 không chia hết cho 4
TH3: 4n + 3 = 1 => 4n = 1 - 3
= -2 (loại ) vì \(\frac{-2}{4}\)không phải là số tự nhiên
TH4: 4n + 3 = 187 => 4n = 187 - 3 = 184
=> n = \(\frac{184}{4}=36\)(TMĐK)
Vậy n = 36 hoặc 2 thì A tối giản
Chúc bạn học tốt !
Gọi ƯCLN(8n + 193;4n + 3) = d
Suy ra: (8n + 193;4n + 3) chia hết cho d . Suy ra: (8n + 193) - 2.(4n + 3)
Suy ra: (8n + 193) - (8n + 6) chia hết cho d
Suy ra: 187 chia hết cho d mà A là phân số tối giản suy ra A khác 187
Suy ra: n khác 11k + 2(k thuộc N)
Suy ra: n khác 17m + 12(m thuộc N)
dùng ( a,b)=1 => (a,a-b)=1
để A tối giản thì ước của 2 cái kia =1
mà 8n+193 là lẻ nên (8n+193.8n+6)=1
áp dụng cái trên..... ko lm đc nhắn tin cho tôi
a, \(A=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
Để A nguyên => \(\frac{187}{4n+3}\inℤ\)
=> \(4n+3\inƯ\left(187\right)\)
Đến đây bạn tự giải tiếp nha.
A là tối giản khi 187 và 4n + 3 có UCLN bằng 1
Vì 187 = 11.17
Giả sử n=11k + r (với 0<=r <=10) => 4n+3 =44k + (4r +3)
mà (11,4n+3) =1 => 4r+ 3 #11p với 11p =11,22,33
(do 4n+3 nguyên tố cùng nhau với 11 nên số dư phải khác bội số của 11
Mà (11, 4)=1 => p khác số chia 4 dư 3 là số 11 => 4r+3 # 11
=> r# 2
=> n # 11k + 2 (k thuộc N)
Giả sử n= 17k + r => 4n+3= 68k + (4r+3)
mà (17,4n+3) = 1 => 4r + 3 # 17p, với 17p=17,34,51,68...(hơi dài, để nghĩ thêm..)
Mà (17,4)=1 =>p khác số chia 17 dư 3 là số 51
=> 4r+ 3# 51
=> r#12
=> n # 17m+ 12
Ta sẽ tìm số tự nhiên \(n\)để \(A\)không là phân số tối giản.
\(A=\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\) không tối giản khi \(\frac{187}{4n+3}\)không tối giản
\(4n+3\inƯ\left(187\right)=\left\{1,11,17,187\right\}\).
Xét bảng:
Vậy \(n\notin\left\{2,46\right\}\)thì \(A\)là phân số tối giản.
dễ lắm bạn dạng này mik hok rùi