K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

các bn trả lời nhanh nhé

đến 9:10 nhé

2 tháng 8 2018

\(A=\frac{2}{4.7}+\frac{2}{7.10}+\frac{2}{10.13}+.....+\frac{2}{73.76}\)

\(=\frac{2}{3}\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+....+\frac{3}{73.76}\right)\)

\(=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{73}-\frac{1}{76}\right)\)

\(=\frac{2}{3}\left(\frac{1}{4}-\frac{1}{76}\right)\)

\(=\frac{2}{3}.\frac{9}{38}=\frac{3}{19}\)

C = 3/4.7 + 3/7.10 + 3/10.13 + ... + 3/73.76

=1/4 - 1/7 + 1/7 - 1/10 + 1/10 - 1/13 + ... + 1/73 - 1/76

=1/4 - 1/76

=18/76

16 tháng 7 2016

\(C=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+......+\frac{1}{73}-\frac{1}{76}\)

\(=\frac{1}{4}-\frac{1}{76}\)

\(=\frac{19}{76}-\frac{1}{76}\)

\(=\frac{18}{76}=\frac{9}{38}\)

19 tháng 3 2018

Ta có : 

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(A=\frac{2}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)

\(A=\frac{2}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(A=\frac{2}{3}\left(1-\frac{1}{100}\right)\)

\(A=\frac{2}{3}.\frac{99}{100}\)

\(A=\frac{33}{50}\)

Vậy \(A=\frac{33}{50}\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{97.100}\)

\(=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)

\(=\frac{2}{3}\left(1-\frac{1}{100}\right)=\frac{2}{3}.\frac{99}{100}=\frac{33}{50}\)

29 tháng 6 2017

Đặt : \(A=\frac{5}{1\cdot4}+\frac{5}{4\cdot7}+\frac{5}{7\cdot10}+...+\frac{5}{27\cdot30}\)

\(A=\frac{1}{3}\left(\frac{5}{1}-\frac{5}{4}+\frac{5}{4}-\frac{5}{7}+...+\frac{5}{27}-\frac{5}{30}\right)\)

\(A=\frac{1}{3}\left(5-\frac{5}{30}\right)\)

\(A=\frac{1}{3}\cdot\frac{29}{6}\)

\(A=\frac{29}{18}\)

29 tháng 6 2017

\(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+....+\frac{5}{27.30}\)

\(=\frac{4-1}{1.4}+\frac{7-4}{4.7}+\frac{10-7}{7.10}+...+\frac{30-27}{27.30}\)

\(=\frac{5}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{27}-\frac{1}{30}\right)\)

\(=\frac{5}{3}\cdot\left(1-\frac{1}{30}\right)\)

\(=\frac{5}{3}\cdot\frac{29}{30}=\frac{29}{18}\)

29 tháng 6 2017

a) \(\frac{5}{1.4}+\frac{5}{4.7}+\frac{5}{7.10}+.....+\frac{5}{27.30}\)

\(=\frac{5}{3}\left(\frac{1}{1.4}+\frac{1}{4.7}+........+\frac{1}{27.30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{27}-\frac{1}{30}\right)\)

\(=\frac{5}{3}\left(1-\frac{1}{30}\right)\)

\(=\frac{5}{3}.\frac{29}{30}=\frac{29}{36}\)

1 tháng 7 2017

Đặt \(A=\frac{12}{3\cdot5}+\frac{12}{5\cdot7}+\frac{12}{7\cdot9}+....+\frac{12}{97\cdot99}\)

\(2A=\frac{12}{3}-\frac{12}{5}+\frac{12}{5}-\frac{12}{7}+...+\frac{12}{97}-\frac{12}{99}\)

\(2A=\frac{12}{3}-\frac{12}{99}\)

\(A=\frac{128}{33}\cdot\frac{1}{2}=\frac{64}{33}\)

21 tháng 8 2023

\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+\dfrac{1}{10.13}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{34}{103}\)

\(\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)

\(\dfrac{1}{3}.\left(1-\dfrac{1}{x+3}\right)=\dfrac{34}{103}\)

\(1-\dfrac{1}{x+3}=\dfrac{34}{103}:\dfrac{1}{3}=\dfrac{34}{103}.3\)

\(1-\dfrac{1}{x+3}=\dfrac{102}{103}\)

\(\dfrac{1}{x+3}=1-\dfrac{102}{103}=\dfrac{103}{103}-\dfrac{102}{103}\)

\(\dfrac{1}{x+3}=\dfrac{1}{103}\)

\(\Rightarrow x+3=103\)

\(x=103-3\)

\(x=100\)

Vậy x = 100

18 tháng 5 2016

\(A=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)

\(A=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)

18 tháng 5 2016

A=3/10.13 +3/13.16+ 3/16.19+....+3/58.61

A=1/10.13+1/13.16+1/16.19+.....+1/58.61

A=1/10- 1/13+ 1/13- 1/16+ 1/16- 1/19+...+1/58 –1/61

A=1/10 – 1/61

A= 61/610 – 10/610

A= 51/610

Mình giải xong rồi k nhá?

3 tháng 8 2018

\(A=\frac{2}{35}+\frac{4}{77}+\frac{2}{143}+\frac{4}{221}+\frac{2}{223}+\frac{4}{437}+\frac{2}{575}\)

\(=\frac{2}{5.7}+\frac{2}{7.11}+\frac{2}{11.13}+\frac{4}{13.17}+\frac{2}{17.19}+\frac{4}{19.23}+\frac{2}{23.25}\)

\(=\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+\frac{1}{17}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{25}\)

\(=\frac{1}{5}-\frac{1}{25}\)

\(=\frac{4}{25}\)

3 tháng 8 2018

giúp mình với mình sắp phải thi chọn lớp rồi

10 tháng 6 2018

\(A=2\frac{1}{2}\)

23 tháng 10 2016

Gọi a là tử số, b là mẫu số của phân số A

a = \(\frac{2008}{1}\)\(\frac{2007}{2}\)\(\frac{2006}{3}\)+ ... + \(\frac{1}{2008}\)

Dãy số a có (2008 - 1)  : 1 + 1 = 2008 số. Và a = ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) x (2008 : 2) 

b = \(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ... + \(\frac{1}{2009}\)

Dãy số b có (2009 - 2) : 1 + 1 = 2008 số. Và b = (\(\frac{1}{2}\)\(\frac{1}{2009}\)) x (2008 : 2)

A = [ ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) x (2008 : 2)] : [ (\(\frac{1}{2}\)\(\frac{1}{2009}\)) x (2008 : 2)] = ( \(\frac{2008}{1}\)\(\frac{1}{2008}\)) :  (\(\frac{1}{2}\)\(\frac{1}{2009}\)

A = \(\frac{\text{2008 x2008 + 1}}{2008}\)\(\frac{2x2009+2}{2x2009}\)

A = 2008