K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
ND
0
BH
19 tháng 12 2016
\(A=\frac{2010}{2}+\frac{2010}{2}+\frac{2010}{6}+\frac{2010}{12}+...+\frac{2010}{9900}\)
<=>\(A=2010\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
<=>\(A=2010\left(\frac{1}{2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
<=>\(A=2010\left(\frac{1}{2}+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
<=>\(A=2010\left(\frac{1}{2}+1-\frac{1}{100}\right)\)
<=>\(A=2010.\frac{149}{100}\)
<=>\(A=\frac{29949}{10}\)
Nếu như đề của bạn viết bị đúng thì ko sao, nhưng nếu đề bạn có bị thừa phân số 2010/2 thì chỉnh sửa lại bài làm bên trên 1 chút
Bổ sung đề: So sánh A và B
Ta có:
A. \(2010^{1000}=\frac{1010^{1010}.2010^{1000}}{2010^{2010}}=\left(\frac{101}{201}\right)^{1010}\)
B. \(2010^{1000}=\frac{2010^{2010}.2010^{1000}}{3010^{3010}}=\left(\frac{201}{301}\right)^{3010}\)
Từ \(\frac{101}{201}>\frac{1}{2}>\frac{40401}{90601}=\left(\frac{201}{301}\right)^2\)và \(\frac{201}{301}< 1\)
có: \(\left(\frac{101}{201}\right)^{1010}>\left(\frac{201}{301}\right)^{2.1010}=\left(\frac{201}{301}\right)^{2020}>\left(\frac{201}{301}\right)^{3010}\)
Suy ra \(A=\left(\frac{101}{201}\right)^{1010}.\frac{1}{2010^{1000}}>\left(\frac{201}{301}\right)^{3010}.\frac{1}{2010^{1000}}\) hay A > B