K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi (12n+1),(30n+2) là d (1)

=>30n+2 ⋮⋮ d

=> 2(30n + 2) ⋮⋮ d hay 60n +4 ⋮⋮ d

Tương tự ta chưng minh:

12n + 1 ⋮⋮d (2)

=> 5(12n+1) ⋮⋮ d hay 60n +5 ⋮⋮d

Do đó (60n + 5) - ( 60n +4 ) ⋮⋮d hay 1 ⋮⋮ d

=> d = 1 hoặc -1

Từ (1) và(2) ta có( 12n+1 ;30n+2) =1

=> P/s 12n + 1 /30n+2 là ps tối giản

12 tháng 3 2020

a) gọi ƯCLN (12n+1; 30n+2)=d (d thuộc N*)

=> 12n+1 và 30n+2 chia hết cho d

=> 5(12n+1) và 2(30n+2) chia hết cho d

=> 60n+5 và 60n+4 chia hết cho d

=>60n+5-60n-4 chia hết cho d

=> 1 chia hết cho d 

=> d=1

=> đpcm

b) \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};.....;\frac{1}{100^2}< \frac{1}{99\cdot100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}=\frac{1}{100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{100}< 1\)

=> đpcm