Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) và b) mik ko bt làm.
c) Ta có a & b là số chẵn nên a*b = \(\frac{1}{2}a\cdot2.\frac{1}{2}b\cdot2\)= 4(\(\frac{1}{2}a\cdot b\)) suy ra đpcm
d) giống c ( \(2\cdot\frac{1}{2}a\cdot b\))
Một số có lẻ có dạng là 2k+1
=)Tổng hai số lẻ là:
(2k+1).2
Vì 2 là số chẵn =)Mọi số . với 2 đều chẵn
=)đpcm
Bài 1 :
Nếu n lẻ thì n + 1 chẵn do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên không chia hết cho n vì n là số lẻ
Bài 2 :
Nếu n chẵn thì n + 1 lẻ do đó tổng n số tự nhiên liên tiếp là \(\frac{n.\left(n+1\right)}{2}\) là số chẵn nên chia hết cho n vì n là số chẵn
a) Tìm hai số nguyên a , b biết :
(a + 2) . (b – 3) = 5.
Vì a,b là số nguyên => a+2;b-3 là số nguyên
=> a+2;b-3 thuộc Ư(5)
Ta có bảng:
a+2 | 1 | 5 | -1 | -5 |
b-3 | 5 | 1 | -5 | -1 |
a | -1 | 3 | -3 | -7 |
b | 8 | 4 | -2 | 2 |
Vậy..........................................................................................................................................
b)Dễ rồi nên bn tự làm nha
c)+)Ta có:p là số nguyên tố;p>3
=>p\(⋮̸3\)
=>p chia 3 dư 1 hoặc p chia 3 dư 2
=>p=3k+1 hoặc p=3k+2 (k\(\inℕ^∗\))
*Th1:p=3k+1 (k\(\inℕ^∗\))
=>(p-1).(p+1)=(3k+1-1).(3k+1+1)=3k.(3k+2)\(⋮\)3(1)
+)Ta lại có:p là số nguyên tố;p>3
=>p là số lẻ
=>p-1 là số chẵn
=>p+1 là số chẵn
=>(p-1) và (p+1) là 2 số chẵn liên tiếp
=>(p-1).(p+1)\(⋮\)8(2)
+)Mà ƯCLN(3,8)=1(3)
+)Từ (1);(2) và (3)
=>(p-1).(p+1)\(⋮\)3.8
=>(p-1).(p+1)\(⋮\)24
Vậy (p-1).(p+1)\(⋮\)24
*TH2:Bạn làm tương tự nha bài này dài lắm nên mk ko làm hết dc
Chúc bn học tốt
Gọi 5 số chẵn đấy lần lượt là : 2a ; 2a + 2 ; 2a + 4 ; 2a -2 ;2a -4
5 số chẵn : 2a - 1 ; 2a -3 ; 2a + 1 ; 2a + 3 ; 2a + 5
Từ đề bài, ta có:
2a + 2a +2 + 2a + 4 + 2a -2 + 2a + 4 = 10a => 10a \(⋮\)10
2a -1 + 2a -3 + 2a +1 + 2a + 3 + 2a + 5
= 10a + 5 => 10a + 5 \(⋮\) 10 dư 5
Mk nhằm ngay chỗ số 5 số chẵn sửa lại số lẻ giùm mk nha! Sorry! Chúc bạn hok tốt!
Gọi 2 số lẻ là 2k+1 và 2h+1
Tích chúng là:
\(\left(2k+1\right)\left(2h+1\right)=4kh+2k+2h+1=2.\left(2kh+k+h\right)+1\) là 1 số lẻ => đpcm