K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

\(\text{a) Ta có:}xy=1\Rightarrow\hept{\begin{cases}2xy=2\\-2xy=-2\end{cases}}\)

\(\text{Ta lại có: }x^2+y^2=2\Rightarrow\hept{\begin{cases}x^2+y^2+2xy=2+2=4\\x^2+y^2-2xy=2-2=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x+y\right)^2=4\\\left(x-y\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x+y=\pm2\\x-y=0\end{cases}}}\)

\(\text{b) Ta có: }x+y=5\)

\(\Rightarrow\left(x+y\right)^2=25\)

\(\Rightarrow x^2+2xy+y^2=25\)

\(\Rightarrow x^2+4+y^2=25\)

\(\Rightarrow x^2+y^2=21\)

\(\text{b) Ta có: }x^2+y^2=21\)

\(\Rightarrow x^2-2xy+y^2=21-2xy\)

\(\Rightarrow\left(x-y\right)^2=21-4\)

\(\Rightarrow\left(x-y\right)^2=17\)

\(\Rightarrow x-y=\pm\sqrt{17}\)

29 tháng 6 2015

a) 

A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)

\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)

\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)

\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)

13 tháng 11 2016

giup minh cau b o tren nha

26 tháng 7 2016

Ta có x=7+y thay vào x.y=60 ta được (7+y).y=60 =>y=-12 , x=-5

a)x2-y2=(-12)2-(-5)2=119

b)x4+y4=(-12)4+(-5)4=21361

có hệ thức viet nhanh hơn mà mình quên rồi :)) nhớ nhe

16 tháng 9 2020

a) Ta có x + y = 25

=> (x + y)2 = 625

=> x2 + y2 + 2xy = 625

=> x2 + y2 + 10 = 625

=> x2 +y2 = 615

b) Ta có x + y = 3

=> (x + y)3 = 27

=> x3 + 3x2y + 3xy2 + y3 = 27

=> x3 + y3 + 3xy(x + y) = 27

=> x3 + y3 + 9xy = 27 

Lại có x + y = 3

=> (x + y)2 = 9

=> x2 + y2 + 2xy = 9

=> 2xy = 4

=> xy = 2

Khi đó x3 + y3 + 9xy + 27

=> x3 + y3 + 18 = 27

=> x3 + y3 = 9

c) Ta có x - y = 5

=> (x - y)2 = 25

=> x2 + y2 - 2xy = 25

=> 2xy = -10

=> xy = -5

Khi đó : x3 - y3 = (x - y)(x2 + xy + y2) = 5(15 - 5) = 5.10 = 50

16 tháng 9 2020

Bài 4.

a) x2 + y2 = x2 + 2xy + y2 - 2xy

= ( x2 + 2xy + y2 ) - 2xy

= ( x + y )2 - 2xy

= 252 - 2.136

= 625 - 272

= 353

b) x + y = 3

⇔ ( x + y )2 = 9

⇔ x2 + 2xy + y2 = 9

⇔ 5 + 2xy = 9 ( gt x2 + y2 = 5 )

⇔ 2xy = 4

⇔ xy = 2

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

= ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

= ( x + y )3 - 3xy( x + y )

= 33 - 3.2.3

= 27 - 18

= 9 

\(B=x^3-y^3+\left(x+y\right)^2\)

\(=\left(x-y\right)^3+3xy\left(x-y\right)+\left(x-y\right)^2+4xy\)

\(=4^3+3\cdot4\cdot5+4^2+4\cdot5\)

\(=160\)

NV
18 tháng 8 2021

\(\left(x+y\right)^2=\left(x-y\right)^2+4xy=4^2+4.5=36\)

\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=4^3+3.5.4=124\)

\(\Rightarrow B=124+36=160\)

 

27 tháng 6 2021

Ta có: 

\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)

\(=a^4-4a^2b+4b^2-2b^2=a^4-4a^2b+2b^2\)

\(x^5+y^5=\left(x+y\right)^5-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)\)

\(=\left(x+y\right)^5-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)

\(=a^5-5\left(a^3-3ab\right)b-10ab^2\)

\(=a^5-5a^3b+15ab^2-10ab^2\)

\(=a^5-5a^3b+5ab^2\)

DD
27 tháng 6 2021

\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)

\(=a^2-4a^2b+2b^2\)

\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)

6 tháng 7 2016

a) x2+y2=(x+y)2-2xy=52-2.2=25-4=21

b)x3+y3=(x+y)(x2+y2-xy)=5.(21-2)=5.19=95

6 tháng 7 2016

thanhyou bạn nhìu nhé

29 tháng 9 2023

Ta có : \(A=x^2+y^2=x^2+2xy+y^2-2xy\)

\(A=\left(x+y\right)^2-2xy\)

Với \(x+y=3\) và \(xy=-10\)

\(\Rightarrow A=3^2-2.\left(-10\right)\)

\(A=9+20\)

\(A=29\)

Tương tự : \(B=x^3+y^3=\left(x+y\right)^3-3xy.\left(x+y\right)\)

\(B=\left(3\right)^3-3.\left(-10\right).3\)

\(B=117\)