K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

a) Ta thấy x=-2 thỏa mãn ĐKXĐ của B.

Thay x=-2 và B ta có :

\(B=\frac{2\cdot\left(-2\right)+1}{\left(-2\right)^2-1}=\frac{-3}{3}=-1\)

b) Rút gọn : 

\(A=\frac{3x+1}{x^2-1}-\frac{x}{x-1}\)

\(=\frac{3x+1-x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{-x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)

Xấu nhỉ ??

23 tháng 7 2020

a) \(ĐKXĐ:x\ne\pm1\)

 \(Q=\frac{1}{2x-2}+\frac{1}{2x+2}+\frac{x^2}{1-x^2}\)

\(\Leftrightarrow Q=\frac{1}{2\left(x-1\right)}+\frac{1}{2\left(x+1\right)}-\frac{x^2}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow Q=\frac{x+1+x-1-2x^2}{2\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow Q=\frac{-2x^2+2x}{2\left(x+1\right)\left(x-1\right)}\)

\(\Leftrightarrow Q=\frac{-1}{x+1}\)

b) Khi \(\left|x+1\right|=2\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=-3\left(tm\right)\end{cases}}\)

Thay \(x=-3\)vào Q ta được :

 \(Q=\frac{-1}{-3+1}=\frac{1}{2}\)

c) Để \(Q\)có giá trị nguyên \(\Leftrightarrow-1⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(-1\right)=\left\{\pm1\right\}\)

\(\Leftrightarrow x\in\left\{-2;0\right\}\)

Vậy để Q có giá trị nguyên \(\Leftrightarrow x\in\left\{-2;0\right\}\)

23 tháng 7 2020

c) Bạn lấy mỗi giá trị nguyên nhỏ nhất của x = -2 thôi nhé !

Xin lỗi vì đọc nhầm đề

10 tháng 9 2020

1/ Thay x=-4 vao A -> A= \(\frac{-4}{-4+3}\)= 4 
2/ B=\(\frac{2}{x-3}\)+\(\frac{x-15}{x^2-9}\)
B= \(\frac{2\left(x+3\right)+x-15}{\left(x-3\right)\left(x+3\right)}\)
B= \(\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)=  \(\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)\(\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)\(\frac{3}{x+3}\)
c, B>A <=> \(\frac{3}{x+3}\)\(\frac{x}{x+3}\)
<=> \(\frac{3}{x+3}\)\(\frac{x}{x+3}\)> 0
<=> \(\frac{3-x}{x+3}\)>0
<=> 3-x <0  / >0           ( Đkxd x khác -3 )
       x+3 <0 / >0
.............. 
...............................

Vậy ...

10 tháng 9 2020

1) \(A=\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))

Với x = -4 ( tmđk ) thì giá trị của A là

\(A=\frac{-4}{-4+3}=\frac{-4}{-1}=4\)

2) \(B=\frac{2}{x-3}+\frac{x-15}{x^2-9}\)( ĐKXĐ : \(x\ne\pm3\))

\(B=\frac{2}{x-3}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x-15}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{2x+6+x-15}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{3x-9}{\left(x-3\right)\left(x+3\right)}\)

\(B=\frac{3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3}{x+3}\)

3) Để B > A

=> \(\frac{3}{x+3}>\frac{x}{x+3}\)( ĐKXĐ : \(x\ne-3\))

<=> \(\frac{3}{x+3}-\frac{x}{x+3}>0\)

<=> \(\frac{3-x}{x+3}>0\)

Xét hai trường hợp :

1.\(\hept{\begin{cases}3-x>0\\x+3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x>-3\\x>-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 3\\x>-3\end{cases}}\Leftrightarrow-3< x< 3\)( tmđk )

2. \(\hept{\begin{cases}3-x< 0\\x+3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}-x< -3\\x< -3\end{cases}}\Leftrightarrow\hept{\begin{cases}x>3\\x< -3\end{cases}}\)( loại )

Vì x nguyên => x ∈ { -2 ; -1 ; 0 ; 1 ; 2 ; 3 }

Vậy ...