K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2016

tìm các chữ số tận cùng của hai số trên ta có :

A=...3-...3=...0 Vì A có tận cùng là 0 =>A chia hết cho 5 (đpcm)

29 tháng 3 2017

Ta có: \(A=999993^{1999}-555557^{1997}\)

\(=999993^{1998}.999993-555557^{1996}.555557\)

\(=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)

\(=\left(...9\right)^{999}.999993-\left(...9\right)^{998}.555557\)

\(=\left(...9\right).999993-\left(...1\right).555557\)

\(=\left(...7\right)-\left(...7\right)\)\(=\left(...0\right)\)

Chữ số tận cùng của \(A=999993^{1999}-555557^{1997}\) là \(0\).

\(\Rightarrow\)\(A=999993^{1999}-555557^{1997}⋮5\)

29 tháng 3 2017

Cho \(A=999993^{1999}-555557^{1997}\)

\(^{1999}\) có dạng \(4n+3\) nên \(999993^{1999}=\overline{...7}\)

\(^{1997}\) có dạng \(4n+1\) nên \(555557^{1997}=\overline{...7}\)

Ta có: \(\overline{...7}-\overline{...7}=\overline{...0}\)

\(\overline{...0}⋮5\) \(\Rightarrow\) \(A⋮5\)

15 tháng 11 2014

Để A chia hết cho5 ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của mỗi số. 

Ta có :

 \(3^{1999}=\left(3^4\right)^{499}\times3^3=81^{499}\times27=......7\)

\(7^{1997}=\left(7^4\right)^{499}\times7=2041^{499}\times7=....7\)

Vậy  A có chữ số tận cùng là 0 nên A chia hết cho 5

 

6 tháng 4 2017

Để A chia hết cho 5 thì A phải có chữ số tận cùng là 0 hoặc 5

Ta có: (1) 9999931999=(9999934)499. 9999933

Vì 9999934 có tận cùng là 1 suy ra (9999934)499 có tận cùng là 1

9999933 có tận cùng là 7 suy ra (9999934)499. 9999933 có tận cùng là 7 ( ta nhân 2 chữ số tận cùng lại với nhau 1.7=7)

(2) 5555571997= (5555574)499 .7

Ta có 5555574 có tận cùng là 1 suy ra (5555574)499 có tận cùng là 1 nên (5555574)499.7 có tận cùng là 7

 Vậy chữ số tận cùng của A là 7-7=0. Từ đây ta kết luận A chia hết cho 5

30 tháng 11 2017

b, 2x+3y chia hết cho 17

=> 13.(2x+3y) chia hết cho 17   hay 26x+39y chia hết cho 17

Mà 17x và 34y đều chia hết cho 17 => 26x+39y-17x-34y chia hết cho 17 hay 9x+5y chia hết cho 17

=> ĐPCM

k mk nha

30 tháng 11 2017

b) Ta có : 2x+3y chia hết cho 17

=> 9(2x+3y) chia hết cho 17

=> 18x+27y chia hết cho 17 

Giả sử điều cần chứng minh là đúng thì 9x+5y chia hết cho 17 

=> 2(9x+5y) chia hết cho 17

18x+10y chia hết cho 17

=> (18x+27y)-(18x+10y) = 17y chia hết cho 17

Mà 18x+27y chia hết cho 17 nên 18x+10y cũng chia hết cho 17

<=> 9x+5y chia hết cho 17

29 tháng 1 2017

Ta có:

\(A=999993^{1999}-555557^{1997}\)

\(A=999993^{1998}.999993-555557^{1996}.555557\)

\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)

\(A=\overline{\left(.....9\right)}^{999}.999993-\overline{\left(.....1\right)}.555557\)

\(A=\overline{\left(.....7\right)}-\overline{\left(.....7\right)}\)

\(A=\overline{\left(.....0\right)}\)

Vì A có tận cùng là 0

\(\Rightarrow A⋮5\) (Đpcm)

Ta có :

A=999993^{1999}-555557^{1997}A=9999931999−5555571997

=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557

=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557

=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557

=\left(....7\right)-\left(....7\right)=(....7)−(....7)

=\left(....0\right)⋮5=(....0)⋮5

\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)