Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm các chữ số tận cùng của hai số trên ta có :
A=...3-...3=...0 Vì A có tận cùng là 0 =>A chia hết cho 5 (đpcm)
Ta có: \(A=999993^{1999}-555557^{1997}\)
\(=999993^{1998}.999993-555557^{1996}.555557\)
\(=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(=\left(...9\right)^{999}.999993-\left(...9\right)^{998}.555557\)
\(=\left(...9\right).999993-\left(...1\right).555557\)
\(=\left(...7\right)-\left(...7\right)\)\(=\left(...0\right)\)
Chữ số tận cùng của \(A=999993^{1999}-555557^{1997}\) là \(0\).
\(\Rightarrow\)\(A=999993^{1999}-555557^{1997}⋮5\)
Cho \(A=999993^{1999}-555557^{1997}\)
Vì \(^{1999}\) có dạng \(4n+3\) nên \(999993^{1999}=\overline{...7}\)
Vì \(^{1997}\) có dạng \(4n+1\) nên \(555557^{1997}=\overline{...7}\)
Ta có: \(\overline{...7}-\overline{...7}=\overline{...0}\)
\(\overline{...0}⋮5\) \(\Rightarrow\) \(A⋮5\)
Để A chia hết cho5 ta xét chữ số tận cùng của A bằng việc xét chữ số tận cùng của mỗi số.
Ta có :
\(3^{1999}=\left(3^4\right)^{499}\times3^3=81^{499}\times27=......7\)
\(7^{1997}=\left(7^4\right)^{499}\times7=2041^{499}\times7=....7\)
Vậy A có chữ số tận cùng là 0 nên A chia hết cho 5
Để A chia hết cho 5 thì A phải có chữ số tận cùng là 0 hoặc 5
Ta có: (1) 9999931999=(9999934)499. 9999933
Vì 9999934 có tận cùng là 1 suy ra (9999934)499 có tận cùng là 1
9999933 có tận cùng là 7 suy ra (9999934)499. 9999933 có tận cùng là 7 ( ta nhân 2 chữ số tận cùng lại với nhau 1.7=7)
(2) 5555571997= (5555574)499 .7
Ta có 5555574 có tận cùng là 1 suy ra (5555574)499 có tận cùng là 1 nên (5555574)499.7 có tận cùng là 7
Vậy chữ số tận cùng của A là 7-7=0. Từ đây ta kết luận A chia hết cho 5
b, 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17 hay 26x+39y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17 => 26x+39y-17x-34y chia hết cho 17 hay 9x+5y chia hết cho 17
=> ĐPCM
k mk nha
b) Ta có : 2x+3y chia hết cho 17
=> 9(2x+3y) chia hết cho 17
=> 18x+27y chia hết cho 17
Giả sử điều cần chứng minh là đúng thì 9x+5y chia hết cho 17
=> 2(9x+5y) chia hết cho 17
18x+10y chia hết cho 17
=> (18x+27y)-(18x+10y) = 17y chia hết cho 17
Mà 18x+27y chia hết cho 17 nên 18x+10y cũng chia hết cho 17
<=> 9x+5y chia hết cho 17
Ta có:
\(A=999993^{1999}-555557^{1997}\)
\(A=999993^{1998}.999993-555557^{1996}.555557\)
\(A=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)
\(A=\overline{\left(.....9\right)}^{999}.999993-\overline{\left(.....1\right)}.555557\)
\(A=\overline{\left(.....7\right)}-\overline{\left(.....7\right)}\)
\(A=\overline{\left(.....0\right)}\)
Vì A có tận cùng là 0
\(\Rightarrow A⋮5\) (Đpcm)
Ta có :
A=999993^{1999}-555557^{1997}A=9999931999−5555571997
=999993^{1998}.999993-555557^{1996}.555557=9999931998.999993−5555571996.555557
=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557=(9999932)999.999993−(5555572)998.555557
=\left(.......9\right).999993-\left(......1\right).555557=(.......9).999993−(......1).555557
=\left(....7\right)-\left(....7\right)=(....7)−(....7)
=\left(....0\right)⋮5=(....0)⋮5
\Leftrightarrow A⋮5\left(đpcm\right)⇔A⋮5(đpcm)