Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc = a . 100 + b . 10 + c
= (a . 98 + b . 7) + 2 . a + 3 . b + a
Ta có : a.98 + b.7 chia hết cho 7
=> 2a + 3b + c chia hết cho 13
a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11
Vậy ab+ba chia hết cho 11
b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9
Vậy ab - ba chia hết cho9
abcdeg = 1000abc + deg
= 1001abc - abc + deg
= 143.7.abc - (abc - deg)
Ta có: 143.7.abc chia hết cho 7
abc - deg chia hết cho 7
=> abcdeg chia hết cho 7.
Chúc bn học tốt!
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
Ta có : \(\overline{abcdeg}=\overline{abc000}+\overline{deg}\)
\(=\overline{abc}.1000+\overline{deg}\)
\(=\overline{abc}.1001-\overline{abc}+\overline{deg}\)
\(=1001.\overline{abc}-\left(\overline{abc}-\overline{deg}\right)\)
Mà 1001\(⋮\)7 nên \(\hept{\begin{cases}1001\overline{abc}⋮7\\\overline{abc}-\overline{deg}⋮7\end{cases}}\)
Vậy \(\overline{abcdeg}⋮7\)
bai toan nay kho