K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10

abc = a . 100 + b . 10 + c
       = (a . 98 + b . 7) + 2 . a + 3 . b + a
  Ta có : a.98 + b.7 chia hết cho 7
 => 2a + 3b + c chia hết cho 13 

23 tháng 10 2015

a, ab + ba= ( 10a +b )+ (10b+a ) = 11a + 11b= 11(a+b) chia hết cho 11

Vậy ab+ba chia hết cho 11

b, ab - ba = (10a + 10b ) + ( 10b + a ) = 9a+9b= 9 (a+b) chia hết cho 9

Vậy ab - ba chia hết cho9

abcdeg = 1000abc + deg

         = 1001abc - abc + deg

         = 143.7.abc - (abc - deg)

Ta có: 143.7.abc chia hết cho 7

        abc - deg chia hết cho 7

=> abcdeg chia hết cho 7.

Chúc bn học tốt!

  
20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

12 tháng 1 2020

Ta có : \(\overline{abcdeg}=\overline{abc000}+\overline{deg}\)

                            \(=\overline{abc}.1000+\overline{deg}\)

                            \(=\overline{abc}.1001-\overline{abc}+\overline{deg}\)

                            \(=1001.\overline{abc}-\left(\overline{abc}-\overline{deg}\right)\)

Mà 1001\(⋮\)7 nên \(\hept{\begin{cases}1001\overline{abc}⋮7\\\overline{abc}-\overline{deg}⋮7\end{cases}}\)

Vậy \(\overline{abcdeg}⋮7\)

                              

14 tháng 2 2016

ủng hộ mình nha