K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2017

Đặt a = 4x + 1 và b = 4y +  điều kiện b ≥ a .  

Biểu diễn b 2   –   a 2   =   8 ( 2 y 2   +   3 y   –   2 x 2   –   x   +   1 ) .

30 tháng 8 2018

Gợi ý: a = 5x – 3; b = 5y – 4.

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

10 tháng 9 2018

a) Ta có: ( 3 n   -   1 ) 2  - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).

Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên  ( 3 n   -   1 ) 2  - 4 chia hết cho 3 với mọi số tự nhiên n;

b) Ta có: 100 - ( 7 n   +   3 ) 2  =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.

14 tháng 9 2021

Đáp án: Vì a+3 và b+4 chia hết cho 5=>a+3+b+4 chia hết cho 5=> a+b+7 chia hết cho 5

=>a+b có tận cùng là 8 hoặc 3

Vì a+3chia hết cho 5

Nếu a+3 có tận cùng là 0=>a có tận cùng là 2

Nếu a+3 có tận cùng là 5=>a có tận cùng là 7

Vì chia hết cho 5

Nếu b+4 có tận cùng là 0=>b có tận cùng là 6

Nếu b+4 có tận cùng là 5=>b có tận cùng là 1

Ta có: a²+b²=(...2)²+(...1)²=...5 chia hết cho 5(1)(chọn a có tận cùng là 2 và b có tận cùng là 1 vì a+b có tận cùng bằng 3) 

mặt khác: a²+b²=(...7)²+(...6)²=...5 chia hết cho 5(2)(chọn a có tận cùng là 7 và b có tận cùng là 6 vì a+b có tận cùng bằng 3)

Từ (1) và (2) =>a^2 + b^2chia hết cho 5(ĐPCM)