Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ đề : Chứng minh (a + b)2 + (a - b)2 = 2(a2 + b2)
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2=2\left(a^2+b^2\right)\)
Áp dụng vào bài toán,ta có :
a) (a + b + c)2 + (b + c - a)2 + (c + a - b)2 + (a + b - c)2
= 2[(b + c)2 + a2] + 2[a2 + (b - c)2] = 2[2a2 + (b + c)2 + (b - c)2] = 2[2a2 + 2(b2 + c2)] = 4(a2 + b2 + c2)
b) (a + b + c + d)2 + (a + b - c - d)2 + (a + c - b - d)2 + (a + d - b - c)2
= 2[(a + b)2 + (c + d)2] + 2[(a - b)2 + (c - d)2] = 2[(a + b)2 + (a - b)2 + (c + d)2 + (c - d)2]
= 2[2(a2 + b2) + 2(c2 + d2)] = 4(a2 + b2 + c2 + d2)
câu a) cái khúc =2[(b+c)^2 +a^2] +2[a^2 +(b-c)^2] là răng
ghi rõ ra dùm
a)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{c}{d}\) =>\(\frac{a}{c}=\frac{b}{d}\)
=>\(\frac{ac}{bd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
=>\(\frac{ac}{bd}=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}=\frac{a^2-c^2}{b^2-d^2}\)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\Rightarrow\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(a-c\right)^2}{\left(b-d\right)^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\Rightarrow\frac{a^2+b^2}{a^2-b^2}=\frac{c^2+d^2}{c^2-d^2}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
a)a/b=c/d
suy ra ad =bc suy ra ad+bd=bc+bd suy ra d(a+b)=b(c+d) suy ra a+b/b=c+d/d
b)a/b=c/d
suy ra ad =bc suy ra ad=bc suy ra ad-bd =bc-bd suy ra (a-b)d=b(c-d) nên a-b/b=c-d/d
c)a/b = c/d suy ra cb = ad suy ra cb+ac =ad+ac suy ra c(a+b)=a(c+d) nên a/a+b=c/c+d
d)a/b=c/d suy ra ad=cb suy ra ad+ac=cb+ac suy ra ac-ad=cb-ac suy ra a(c-d)=c(b-a) nên a/b-a=c/c-d
e)a/b=c/d suy ra a/b2 =a/b . a/b =c/d .c/d =c/d 2
g)từ câu e ta suy ra dc ;a^2/b^2+1=c^2/d^2+1 nên a^2+b^2/b^2=c^2+d^2/d^2
chổ nào bn ko hiểu ở bài này bạn có thể hỏi mình
cho a/b=c/d
chứng minh :
2a/a+b=2c/c+a
a-b/2a+b=c-d/2c-d
a/a^2+b^2=c/c^2+d^2
a+b/a^2-b^2=c+d/c^2-d^2
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{2a}{a+b}=\dfrac{2bk}{bk+b}=\dfrac{2k}{k+1}\)
\(\dfrac{2c}{c+d}=\dfrac{2dk}{dk+d}=\dfrac{2k}{k+1}\)
Do đó: \(\dfrac{2a}{a+b}=\dfrac{2c}{c+d}\)
b: \(\dfrac{a-b}{2a+b}=\dfrac{bk-b}{2bk+b}=\dfrac{k-1}{2k+1}\)
\(\dfrac{c-d}{2c+d}=\dfrac{dk-d}{2dk+d}=\dfrac{k-1}{2k+1}\)
Do đó: \(\dfrac{a-b}{2a+b}=\dfrac{c-d}{2c+d}\)
c: \(\dfrac{a}{c}=\dfrac{bk}{dk}=\dfrac{b}{d}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
Do đó: \(\dfrac{a}{c}=\dfrac{a^2+b^2}{c^2+d^2}\)
hay \(\dfrac{a}{a^2+b^2}=\dfrac{c}{c^2+d^2}\)
1: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\)
\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\)
Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)
2: \(\dfrac{2a+b}{a-2b}=\dfrac{2\cdot bk+b}{bk-2b}=\dfrac{b\left(2k+1\right)}{b\left(k-2\right)}=\dfrac{2k+1}{k-2}\)
\(\dfrac{2c+d}{c-2d}=\dfrac{2dk+d}{dk-2d}=\dfrac{d\left(2k+1\right)}{d\left(k-2\right)}=\dfrac{2k+1}{k-2}\)
Do đó: \(\dfrac{2a+b}{a-2b}=\dfrac{2c+d}{c-2d}\)
3: \(\dfrac{a+b}{a-b}=\dfrac{bk+b}{bk-b}=\dfrac{b\left(k+1\right)}{b\cdot\left(k-1\right)}=\dfrac{k+1}{k-1}\)
\(\dfrac{c+d}{c-d}=\dfrac{dk+d}{dk-d}=\dfrac{d\left(k+1\right)}{d\left(k-1\right)}=\dfrac{k+1}{k-1}\)
Do đó: \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
4: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5\cdot bk+3b}{5dk+3d}=\dfrac{b\left(5k+3\right)}{d\left(5k+3\right)}=\dfrac{b}{d}\)
\(\dfrac{5a-3b}{5c-3d}=\dfrac{5\cdot bk-3b}{5\cdot dk-3d}=\dfrac{b\left(5k-3\right)}{d\left(5k-3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
Them a/b = c/d nx
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}\) (1)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\) (2)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{a+c}{b+d}\right)^2\) (3)
Từ (1) (2) và (3) \(\Rightarrow\left(\frac{a+c}{b+d}\right)^2=\frac{a^2+c^2}{b^2+d^2}\) ( đpcm )