Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trước tiên muốn kết bạn thì phải cố vấn thêm chi tiết về bạn thì mới được chứ
Đường tròn c: Đường tròn qua C với tâm O Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [B, A] Đoạn thẳng i: Đoạn thẳng [C, A] Đoạn thẳng k: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [B, I] Đoạn thẳng t: Đoạn thẳng [H, J] Đoạn thẳng a: Đoạn thẳng [C, I] Đoạn thẳng f_1: Đoạn thẳng [H, K] Đoạn thẳng g_1: Đoạn thẳng [J, K] Đoạn thẳng h_1: Đoạn thẳng [A, I] Đoạn thẳng i_1: Đoạn thẳng [A, J] Đoạn thẳng j_1: Đoạn thẳng [A, K] Đoạn thẳng l_1: Đoạn thẳng [I, D] Đoạn thẳng m_1: Đoạn thẳng [H, D] Đoạn thẳng r_1: Đoạn thẳng [I, M] Đoạn thẳng s_1: Đoạn thẳng [N, I] Đoạn thẳng t_1: Đoạn thẳng [P, I] Đoạn thẳng a_1: Đoạn thẳng [P, K] O = (2.34, 3.06) O = (2.34, 3.06) O = (2.34, 3.06) C = (5.72, 3.08) C = (5.72, 3.08) C = (5.72, 3.08) Điểm B: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, f Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm A: Điểm trên c Điểm H: Giao điểm đường của j, g Điểm H: Giao điểm đường của j, g Điểm H: Giao điểm đường của j, g Điểm I: Giao điểm đường của l, n Điểm I: Giao điểm đường của l, n Điểm I: Giao điểm đường của l, n Điểm J: Giao điểm đường của r, q Điểm J: Giao điểm đường của r, q Điểm J: Giao điểm đường của r, q Điểm K: Giao điểm đường của d, a Điểm K: Giao điểm đường của d, a Điểm K: Giao điểm đường của d, a Điểm D: Giao điểm đường của k_1, j_1 Điểm D: Giao điểm đường của k_1, j_1 Điểm D: Giao điểm đường của k_1, j_1 Điểm P: Giao điểm đường của n_1, g Điểm P: Giao điểm đường của n_1, g Điểm P: Giao điểm đường của n_1, g Điểm M: Giao điểm đường của p, h Điểm M: Giao điểm đường của p, h Điểm M: Giao điểm đường của p, h Điểm N: Giao điểm đường của q_1, g Điểm N: Giao điểm đường của q_1, g Điểm N: Giao điểm đường của q_1, g
Kéo dài BI cắt AK tại D. Ta chứng minh \(BD\perp AK\).
Từ I kẻ \(IM\perp AB;IN\perp BC\)
Ta có ngay \(\Delta BIM=\Delta BIN\) (Cạnh huyền góc nhọn)
\(\Rightarrow BM=BN\)
Kéo dài tia AK cắt BC tại P.
Ta có \(\Delta AIM=\Delta PIN\left(g-c-g\right)\Rightarrow AM=PN\)
Vậy thì ta có AB = AM + MB = PN + NB = BP.
Suy ra tam giác ABP cân tại B.
Xét tam giác cân ABP có BD là phân giác đồng thời đường cao. Vậy \(BD\perp AK\)
Ta thấy HJ và HK là phân giác hai góc kề bù nên chũng vuông góc.
Xét tứ giác JDKH có \(\widehat{JDK}+\widehat{JHK}=90^o+90^o=180^o\)
Vậy JDKH là tứ giác nội tiếp. Hay \(\widehat{JKH}=\widehat{JDH}\)
Xét tứ giác BHDA có \(\widehat{ADB}=\widehat{AHB}=90^o\) nên BHDA là tứ giác nội tiếp.
Suy ra \(\widehat{BDH}=\widehat{BAH}\)
Mà \(\widehat{BAH}=\widehat{BCA}\) (Cùng phụ với góc \(\widehat{ABC}\) )
Vậy nên \(\widehat{JKH}=\widehat{BCA}\)
Xét tam giác ABC và tam giác HJK có:
\(\widehat{BAC}=\widehat{JHK}=90^o\)
\(\widehat{BCA}=\widehat{JKH}\)
\(\Rightarrow\Delta ABC\sim\Delta HJK\left(g-g\right)\)
Cô giải đúng rùi nhưng em chưa học tứ giác nội tiếp đường tròn
Nhưng dù sao cũng cảm ơn cô
M D N B C A
Xét tam giác BMD và tam giác CND có :
\(\widehat{BMD}=\widehat{CND}=90^O\)
\(\widehat{BDM}=\widehat{CDN}\left(đ.đ\right)\)
=> tam giác BMD đồng dạng với tam giác CND ( g.g )
hình tự vẽ nha
kẻ tiếp tuyến Ax ( Ax khác phía với C' )
\(\Rightarrow Ax\perp OA\); \(\widehat{xAC}=\widehat{ABC}\)
Xét tứ giác BCB'C' có \(\widehat{BC'C}=\widehat{BB'C}=90^o\)nên tứ giác BC'B'C nội tiếp
\(\Rightarrow\widehat{C'BC}+\widehat{CB'C'}=180^o\)
Mà \(\widehat{AB'C'}+\widehat{C'B'C}=180^o\)
\(\Rightarrow\widehat{AB'C'}=\widehat{ABC}\)
Ta có : \(\widehat{AB'C'}+\widehat{B'AO}=\widehat{ABC}+\widehat{B'AO}=\widehat{xAC}+\widehat{B'AO}=\widehat{xAO}=90^o\)
\(\Rightarrow OA\perp B'C'\)
mình nè
= 2.abc + 1000