Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cosi với các số dương a,b,c ta có:
\(\dfrac{a^2}{b+c}+\dfrac{b+c}{4}\ge2\sqrt{\dfrac{a^2\left(b+c\right)}{4\left(b+c\right)}}=a\) (1)
CMTT, ta có: \(\dfrac{b^2}{c+a}+\dfrac{c+a}{4}\ge b\) (2)
\(\dfrac{c^2}{a+b}+\dfrac{a+b}{4}\ge c\) (3)
Từ (1),(2) và (3) suy ra:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}+\dfrac{2\left(a+b+c\right)}{4}\ge a+b+c\)
\(\Leftrightarrow\)\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\) \(\ge\dfrac{a+b+c}{2}\) = \(\dfrac{6}{2}=3\)
\(\Rightarrow\) A\(\ge3\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(a=b=c=2\)
Vậy GTNN của A = 3 \(\Leftrightarrow a=b=c=2\)
\(\frac{1}{a}+\frac{1}{c}=\frac{2}{b}\Leftrightarrow b=\frac{2ac}{a+c}\)
\(P=\frac{a+b}{2a-b}+\frac{b+c}{2c-b}=\frac{a+\frac{2ac}{a+c}}{2a-\frac{2ac}{a+c}}+\frac{\frac{2ac}{a+c}+c}{2c-\frac{2ac}{a+c}}=\frac{a+3c}{2a}+\frac{3a+c}{2c}=1+\frac{3}{2}\left(\frac{a}{c}+\frac{c}{a}\right)\ge4\)
Dấu "=" xảy ra khi \(a=b=c\)
\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)
Áp dụng BĐT Svac
⇒\(A=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\text{≥}\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)
Vì a+b+c=6
⇒\(\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{6^2}{12}=\dfrac{36}{12}=3\)
Còn lại thì bạn tự làm tiếp nha
http://olm.vn/hoi-dap/question/595391.html
Bài giải đây bạn nhé! Mà bạn xem lại đề bài , sao lại từ a,b,c lại chuyển qua x,y,z vậy?
\(P=\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\ge2\sqrt{a.\frac{1}{a}}+2\sqrt{b.\frac{1}{b}}+2\sqrt{c.\frac{1}{c}}=6\)
Dấu " =" xảy ra : \(a=b=c=1\)
\(\Rightarrow P_{Min}=6\Leftrightarrow a=b=c=1\)
P/s : a,b,c > 0
\(A=\frac{a^2}{a+b}+\frac{b^2}{c+a}+\frac{c^2}{b+c}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=\frac{6}{2}=3..\)