Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AIMK có \(\widehat{AIM}=\widehat{AKM}=\widehat{KAI}=90^0\)
nen AIMK là hình chữ nhật
Suy ra: MI\(\perp\)MK
b: Ta có: MA=MB=MC
nên ΔBAC nội tiếp đường tròn có tâm là M
mà ΔBAC vuông tại A
nên BC là đường kính của (M)
=>B,M,C thẳng hàng
c: Vì B,M,C thẳng hàng
mà MB=MC
nên M là trung điểm của BC
a/ áp dụng định lý py - ta - go vào tam giác ABC vuông tại A có :
AB2 +AC2 = BC2
<=> 62 +AC2 = 102
<=> AC2 = 64
<=> AC=8 (cm )
ta có AB < AC < BC (6 < 8 < 10 )
=> \(\widehat{ACB}< \widehat{ABC}< \widehat{BAC}\) ( quan hệ giữa góc và cạnh )
b/ xét tam giác CAB và CAD có
CA chung
AB = AD ( vì A là trung điểm của BD )
\(\widehat{CAB}=\widehat{CAD}\)( = 90 độ )
=> tam giác CAB = tam giác CAD ( c - g - c )
=> CB = CD
=> tam giác BCD cân tại C
các câu còn lại mk k biết làm dâu
học tốt
a) Có: Tam giác ABC vuông tại A => AB2+AC2=BC2 (ĐL Pytago) <=> AC2=BC2-AB2 => AC2=102-62
=> AC2=100-36=64 => AC2=82 =>AC=8 (cm)
=> AB<AC<BC => ^BAC>^ABC>^ACB (Quan hệ giữa góc và cạnh đối xứng trong tam giác)
b) ^A=900, A là trung điểm của BD => AC là trung trực của đoạn thẳng BD => CB=CD (Tính chất đường trung trực)
=> Tam giác BCD cân tại C (đpcm)
c) Xét tam giác BCD: A là trung điểm của BD, K là trung điểm của BC, AC giao DK tại M.
=> M là trọng tâm của tam giác BCD => MC=2/3AC (T/c 3 đường trung tuyến) => MC=2/3.8\(\approx\)5,3 (cm)
d) \(\Delta\)ABC=\(\Delta\)ADC (c.g.c) => ^C1=^C2 (2 góc tương ứng) (1)
Điểm Q thuộc trung trực của AC => QA=QC => Tam giác AQC cân tại Q => ^A1=^C1 (2)
Từ (1) và (2) => ^C2=^A1. Mà 2 góc đó nằm ở vị trí so le trong => AQ//BC
Lại có: AQ//BC và A là trung điểm của BD => AQ là đường trung bình của tam giác BCD.
=> Q là trung điểm của DC => BQ là trung tuyến của tam giác BCD. Mà M là trọng tâm của tam giác BCD
=> BQ đi qua điểm M hay 3 điểm B,M,Q thẳng hàng (đpcm) .
a, AB2 + AC2 = BC2 \(\Rightarrow\) AC2 = BC2 - AB2 hay AC 2 = 10 2 - 62 = 64 \(\Rightarrow\)AC2 = \(\sqrt{\left(64^{ }\right)^2}\)\(\Rightarrow\) AC = 8
SO SÁNH : AB < AC < BC ( 6 < 8 < 10 )
b, xét \(\Delta\)ABC ( \(\widehat{BAC}\)= \(90^0_{ }\)) =và \(\Delta\)ADC (\(\widehat{DAC}\)= 90 độ)
AB = AD ( A là trung điểm BD )
AC : cạnh chung
\(\Rightarrow\)\(\Delta\)ABC = \(\Delta\)ADC ( 2 cạnh góc vuông )
\(\Rightarrow\)BC = DC ( 2 cạnh tương ứng )
\(\Rightarrow\)\(\Delta\)BCD cân
ý c với d mình đang nghĩ đới nhá ^_^
Bạn tự vẽ hình nha
a.
Xét tam giác ABO và tam giác CDO có:
AO = CO (BO là trung truyến của tam giác ABC)
AOB = COD (2 góc đối đỉnh)
BO = DO (gt)
=> Tam giác ABO = Tam giác CDO (c.g.c)
=> BAO = DCO (2 góc tương ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CD.
b.
BO là trung tuyến của tam giác ABC
=> O là trung điểm của AC
=> AO = CO = \(\frac{1}{2}AC\) (1)
- BO = DO (gt) => CO là trung tuyến của tam giác BCD
- BM = CM (M là trung điểm của BC) => DM là trung tuyến của tam giác BCD
=> I là giao điểm của 2 đường trung tuyến CO và DM của tam giác BCD
=> I là trọng tâm của tam giác BCD.
=> IO = \(\frac{1}{3}OC\) (2)
Thay (1) vào (2), ta có:
IO = \(\frac{1}{3}OC=\frac{1}{3}\times\frac{1}{2}AC=\frac{1}{6}AC\)
\(\Rightarrow AC=6\times IO\)
c.
AB // CD
=> EBM = DCM (2 góc so le trong)
Xét tam giác EBM và tam giác DCM có:
EBM = DCM (chứng minh trên)
BM = CM (M là trung điểm của BC)
BME = CMD (2 góc đối đỉnh)
=> Tam giác EBM = Tam giác DCM (g.c.g)
=> BE = CD (2 cạnh tương ứng)
mà CD = AB (tam giác ABO = tam giác CDO)
=> BE = AB.
Chúc bạn học tốt